-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathhw10 old.jl
553 lines (448 loc) · 15.6 KB
/
hw10 old.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
### A Pluto.jl notebook ###
# v0.12.10
using Markdown
using InteractiveUtils
# This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error).
macro bind(def, element)
quote
local el = $(esc(element))
global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing
el
end
end
# ╔═╡ 9c8a7e5a-12dd-11eb-1b99-cd1d52aefa1d
begin
import Pkg
Pkg.activate(mktempdir())
Pkg.add([
"Plots",
"PlutoUI",
"Images",
"FileIO",
"ImageMagick",
"ImageIO",
"OffsetArrays",
"ThreadsX",
"Strided",
])
using Plots
using PlutoUI
using Images
using OffsetArrays
using ThreadsX
using Strided
end
# ╔═╡ 0f8db6f4-2113-11eb-18b4-21a469c67f3a
md"""
### Lecture 23: Solving Partial Differential Equations (PDEs) Numerically
**Part II: Heat transport by ocean currents (two-dimensional advection and diffusion)**
"""
# ╔═╡ ed741ec6-1f75-11eb-03be-ad6284abaab8
html"""
<iframe width="700" height="394" src="https://www.youtube-nocookie.com/embed/H4HUJs6LQfI" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen></iframe>
"""
# ╔═╡ ac759b96-2114-11eb-24cb-d50b556f4142
md"""
### 1) Background: two-dimensional advection-diffusion
##### 1.1) The two-dimensional advection-diffusion equation
Recall from **Lecture 22** that the one-dimensional advection-diffusion equation is written as
$\frac{\partial T(x,t)}{\partial t} = -U \frac{\partial T}{\partial x} + \kappa \frac{\partial^{2} T}{\partial x^{2}},$
where $T(x, t)$ is the temperature, $U$ is a constant advective velocity and $\kappa$ is the diffusivity.
The two-dimensional advection diffusion equation simply adds advection and diffusion operators acting in a second dimensions $y$ (orthogonal to $x$).
$\frac{\partial T(x,y,t)}{\partial t} = u(x,y) \frac{\partial T}{\partial x} + v(x,y) \frac{\partial T}{\partial y} + \kappa \left( \frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} \right),$
where $\vec{u}(x,y) = (u, v) = u\,\mathbf{\hat{x}} + v\,\mathbf{\hat{y}}$ is a velocity vector field.
Throughout the rest of the Climate Modelling module, we will consider $x$ to be the *longitundinal* direction (positive from west to east) and $y$ to the be the *latitudinal* direction (positive from south to north).
"""
# ╔═╡ 3a4a1aea-2118-11eb-30a9-57b87f2ddfae
md"""
##### 1.2) Multivariable shorthand notation
Conventionally, the two-dimensional advection-diffusion equation is written more succintly as
$\frac{\partial T(x,y,t)}{\partial t} = - \vec{u} \cdot \nabla T + \kappa \nabla^{2} T,$
using the following shorthand notation.
The **gradient** operator is defined as
$\nabla \equiv (\frac{\partial}{\partial x}, \frac{\partial }{\partial y})$
such that
$\nabla T = (\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y})$ and
$\vec{u} \cdot \nabla T = (u, v) \cdot (\frac{\partial T}{\partial x}, \frac{\partial T}{\partial y}) = u \frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y}.$
The **Laplacian** operator $\nabla^{2}$ (sometimes denoted $\Delta$) is defined as
$\nabla^{2} = \frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}}$
such that
$\nabla^{2} T = \frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}}.$
The **divergence** operator is defined as $\nabla \cdot [\quad]$, such that
$\nabla \cdot \vec{u} = \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial x} \right) \cdot (u,v) = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}.$
**Note:** Since seawater is largely incompressible, we can approximate ocean currents as a *non-divergent flow*, with $\nabla \cdot \vec{u} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$. Among other implications, this allows us to write:
\begin{align}
\vec{u} \cdot \nabla T&=
u\frac{\partial T(x,y,t)}{\partial x} + v\frac{\partial T(x,y,t)}{\partial y}\newline &=
u\frac{\partial T}{\partial x} + v\frac{\partial T}{\partial y} + T\left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}\right)\newline &=
\left( u\frac{\partial T}{\partial x} + T\frac{\partial u}{\partial x} \right) +
\left( v\frac{\partial T}{\partial y} + \frac{\partial v}{\partial y} \right)
\newline &=
\frac{\partial (uT)}{\partial x} + \frac{\partial (vT)}{\partial x}\newline &=
\nabla \cdot (\vec{u}T)
\end{align}
using the product rule (separately in both $x$ and $y$).
"""
# ╔═╡ a60e5550-211a-11eb-3cf8-f9bae0a9efd3
md"""
##### 1.3) The flux-form two-dimensional advection-diffusion equation
This lets us finally re-write the two-dimensional advection-diffusion equation as:
$\frac{\partial T}{\partial t} = - \nabla \cdot (\vec{u}T) + \kappa \nabla^{2} T$
which is the form we will use in our numerical algorithm below.
"""
# ╔═╡ b1b5625e-211a-11eb-3ee1-3ba9c9cc375a
md"""
### 2)
"""
# ╔═╡ 65da5b38-12dc-11eb-3505-bdaf7834afaa
begin
Δx = 0.04
Δy = 0.04
xs = (0. -Δx/2.:Δx:1. +Δx/2.)'
ys = (-1. -Δy/2.:Δy:1. +Δx/2.)
Nx = length(xs)
Ny = length(ys)
end;
# ╔═╡ 490320c0-2818-11eb-1b72-f3c08c502e51
Δt = 0.005
# ╔═╡ 9036dc6a-204e-11eb-305d-45e760e62bef
begin
diff_kernel = OffsetArray(zeros(Float64, 3,3), -1:1, -1:1)
diff_kernel[0, 0] = -4
diff_kernel[-1, 0] = 1.; diff_kernel[1, 0] = 1.;
diff_kernel[0, -1] = 1.; diff_kernel[0, 1] = 1.;
diff_kernel
end
# ╔═╡ 1cea2b90-205d-11eb-0d06-7df64faf1b53
begin
adv_kernel = OffsetArray(zeros(Float64, 3,3), -1:1, -1:1)
adv_kernel[-1, 0] = -1.; adv_kernel[1, 0] = 1.;
adv_kernel[0, -1] = -1.; adv_kernel[0, 1] = 1.;
adv_kernel
end
# ╔═╡ d82eefe0-280e-11eb-1d94-4b2d95630f3c
xs
# ╔═╡ 6b3b6030-2066-11eb-3343-e19284638efb
plot_kernel(A) = heatmap(
collect(A),
color=:bluesreds, clims=(-maximum(abs.(A)), maximum(abs.(A))), colorbar=false,
xticks=false, yticks=false, size=(100, 100), xaxis=false, yaxis=false
)
# ╔═╡ fd07ee24-2067-11eb-0ac8-7b3da3993223
plot_kernel(diff_kernel)
# ╔═╡ dab0f406-2067-11eb-176d-9dab6819dc98
plot_kernel(adv_kernel)
# ╔═╡ b68ca886-2053-11eb-2e39-35c724ed3a3c
function update_ghostcells!(A; option="no-flux")
Atmp = @view A[:,:]
if option=="no-flux"
A[1, :] = Atmp[2, :]; Atmp[end, :] = Atmp[end-1, :]
A[:, 1] = Atmp[:, 2]; Atmp[:, end] = Atmp[:, end-1]
end
end
# ╔═╡ 60e62962-280b-11eb-063c-e99186efb59c
function α(T; α0=α0, αi=αi, ΔT=3.)
if T < -ΔT
return αi
elseif -ΔT <= T < ΔT
return αi + (α0-αi)*(T+ΔT)/(2ΔT)
elseif T >= ΔT
return α0
end
end
# ╔═╡ e0ed2f4a-2836-11eb-20e1-23f8567a435c
plot(-20:20, α, ylim=(0,1))
# ╔═╡ 09c49990-280c-11eb-3ad6-9dd0dd88376d
heatmap(S) |> as_png
# ╔═╡ 96ed4c10-280a-11eb-0eba-139ca63247e3
T0 = 0.0
# ╔═╡ c4424838-12e2-11eb-25eb-058344b39c8b
begin
# Initial conditions
T = [
T0
for y in ys, x in xs[:]
]
t = Ref(0.)
end;
# ╔═╡ b7077870-2b45-11eb-220f-6585a0c26f65
size(T)
# ╔═╡ f5ae1756-12e9-11eb-1228-8f03879c154a
md"""
### Two-dimensional advection and diffusion
"""
# ╔═╡ f9824610-12e7-11eb-3e61-f96c900a0636
md"""
##### Need boundary conditions still!
"""
# ╔═╡ 440fe49a-12e5-11eb-1c08-f706f5f33c84
@bind go Clock(.1)
# ╔═╡ 9fe89d82-2833-11eb-2a39-5f94dd51d1ef
@bind temperature_control_event html"""
<script>
const add_button = html`<button>Submit</button>`
const add_field = html`<input type=number value=-5 style='width: 4em;'>`
const set_button = html`<button>Submit</button>`
const set_field = html`<input type=number value=14 style='width: 4em;'>`
const node = html`<div style='border: 1em solid #eeffee; padding: 1em; border-radius: 1.5em;'>
<p>Increase global temperature by ${add_field}°C     ${add_button}</p>
<p>Set global temperature to ${set_field}°C     ${set_button}</p>
</div>`
add_field.oninput = set_field.oninput = (e) => {
e.stopPropagation()
}
add_button.onclick = () => {
node.value = {
type: "add",
value: add_field.valueAsNumber
}
node.dispatchEvent(new CustomEvent("input"))
}
set_button.onclick = () => {
node.value = {
type: "set",
value: set_field.valueAsNumber
}
node.dispatchEvent(new CustomEvent("input"))
}
return node
</script>
"""
# ╔═╡ 4a709370-2818-11eb-1302-0f877986e7b6
κ = 0.015
# ╔═╡ 79a0086c-2050-11eb-1974-49d430b5eecd
begin
function diffuse(T, j, i)
return κ.*sum(diff_kernel[-1:1,-1:1].*T[j-1:j+1, i-1:i+1])/(2Δx^2)
end
diffuse(T) = [diffuse(T, j, i) for j=2:Ny-1, i=2:Nx-1]
end
# ╔═╡ 9b9e1b30-2810-11eb-2493-717b3949a3c5
diffuse(T)
# ╔═╡ 396ad562-2837-11eb-0a65-55ece65a7da6
α0=0.3
# ╔═╡ 439f7984-2837-11eb-2e08-75d8e90d4b9f
αi=0.5
# ╔═╡ 2ae5d9ee-280b-11eb-1bfc-c79d2742eee8
A = 11
# ╔═╡ 30539f30-280b-11eb-1219-9b1d7d8c8cfb
B = -0.7
# ╔═╡ 13f114d0-280b-11eb-2c89-67cc659372ce
function outgoing_thermal_radiation(T)
A .- B .* (T .- T0)
end
# ╔═╡ 5f6ca7c2-2816-11eb-2bdb-6502b84cc9c8
plot(
-10:40, outgoing_thermal_radiation(-10:40),
xlabel="Temperature",
ylabel="Outgoing radiation"
)
# ╔═╡ 06367924-2839-11eb-1de9-51833725a659
S_peak = 35.0
# ╔═╡ ec3798f0-280b-11eb-3e26-9d40d35a6920
Ss = [
S_peak .* (cos((y+1) * π/4) + .3)
for y in ys, x in xs[:]
]
# ╔═╡ 443fb830-280b-11eb-017e-0d8a56cf7729
function absorbed_solar_radiation(T)
absorption = 1.0 .- α.(T)
absorption .* Ss
end
# ╔═╡ b2c066b0-2815-11eb-0373-453a84ff3d3b
mean(x) = sum(x) / length(x)
# ╔═╡ bff76d60-2815-11eb-2dc3-8f92794a5056
go; mean(T)
# ╔═╡ b0a94630-2833-11eb-1f37-63e7f5beaf10
begin
if !ismissing(temperature_control_event)
e = temperature_control_event
if e["type"] == "add"
T .+= e["value"]
elseif e["type"] == "set"
T .= e["value"]
end
end
temperature_control_event_handled = true
Text("Temperature control logic")
end
# ╔═╡ 3b0e16a2-12e5-11eb-3130-c763c1c85182
# ╔═╡ 1528ed7e-12e5-11eb-34cf-112d2baa7353
function temperature_heatmap(T)
levels = -10:1.0:40
p = contourf(xs', ys, T,
levels=levels,
color=:bluesreds, colorbar_title="Temperature [°C]",
lw=0,
clims=extrema(levels)
)
contour!(p, xs', ys, T,
levels=[0],
color=:white,
lw=3
)
end
# ╔═╡ bb084ace-12e2-11eb-2dfc-111e90eabfdd
md"##### Setting up the velocity field"
# ╔═╡ e3ee80c0-12dd-11eb-110a-c336bb978c51
begin
∂x(ϕ) = (ϕ[:,2:end] - ϕ[:,1:end-1])/Δx
∂y(ϕ) = (ϕ[2:end,:] - ϕ[1:end-1,:])/Δy
xpad(ϕ) = hcat(zeros(size(ϕ,1)), ϕ, zeros(size(ϕ,1)))
ypad(ϕ) = vcat(zeros(size(ϕ,2))', ϕ, zeros(size(ϕ,2))')
xitp(ϕ) = 0.5*(ϕ[:,2:end]+ϕ[:,1:end-1])
yitp(ϕ) = 0.5*(ϕ[2:end,:]+ϕ[1:end-1,:])
function diagnose_velocities(ψ)
u = ∂y(ψ)
v = -∂x(ψ)
return u,v
end
end
# ╔═╡ 627eb1a4-12e2-11eb-30d1-c1ad292d1522
begin
ϵ = 0.05
xψ = (-Δx:Δx:1. +Δx)'
yψ = (-1-Δy:Δy:1. +Δy)
# See page 595 of Vallis Edt.2
ψ̂(x,y) = π*sin.(π*y) * (
1 .- x - exp.(-x/(2*ϵ)) .* (
cos.(√3*x/(2*ϵ)) .+
(1. /√3)*sin.(√3*x/(2*ϵ))
)
.+ ϵ*exp.((x .- 1.)/ϵ)
)
u,v = diagnose_velocities(ψ̂(xψ, yψ))
U = xitp(u) ./10.
V = yitp(v) ./10.
U[1,:] .= 0.; V[1,:] .= 0.;
U[end,:] .= 0.; V[end,:] .= 0.;
U[:,1] .= 0.; V[:,1] .= 0.;
U[:,end] .= 0.; V[:,end] .= 0.;
end;
# ╔═╡ 16b72cfc-2114-11eb-257d-b7747a99e155
begin
function advect(T, j, i)
return .-(
sum(adv_kernel[0, -1:1].*(U[j, i-1:i+1].*T[j, i-1:i+1]))/(2Δx) .+
sum(adv_kernel[-1:1, 0].*(V[j-1:j+1, i].*T[j-1:j+1, i]))/(2Δy)
)
end
advect(T) = [advect(T, j, i) for j=2:Ny-1, i=2:Nx-1]
end
# ╔═╡ 918ae9c0-2810-11eb-0620-956ef6dac50c
advect(T)
# ╔═╡ 42ea047e-2811-11eb-0e60-510310f813d8
function timestep2!(t, T)
update_ghostcells!(T)
T[2:end-1, 2:end-1] .+= Δt.*(
advect(T) .+ diffuse(T) .+
(absorbed_solar_radiation(T)[2:end-1, 2:end-1]) .-
(outgoing_thermal_radiation(T)[2:end-1, 2:end-1])
)
t[] += Δt
end;
# ╔═╡ ad1aec70-2811-11eb-0473-bbb02625902a
for i in 1:10
timestep2!(t, T)
end
# ╔═╡ 87bfc240-12e3-11eb-03cc-756dc00efa6c
function timestep!(t, T)
update_ghostcells!(T)
T[2:end-1, 2:end-1] .+= Δt*(
advect(T) .+ diffuse(T) .+
(@view absorbed_solar_radiation(T)[2:end-1, 2:end-1]) .-
(@view outgoing_thermal_radiation(T)[2:end-1, 2:end-1])
)
t[] += Δt
end;
# ╔═╡ 1a880910-2811-11eb-15db-158d2c8eb1a4
for i in 1:10
timestep!(t, T)
end
# ╔═╡ 3b4e4722-12fe-11eb-238d-17aea2c23f58
begin
CFL_adv = maximum(V)*Δt/Δx
CFL_diff = κ*Δt/(Δx^2)
CFL_adv, CFL_diff
end
# ╔═╡ c0e46442-27fb-11eb-2c94-15edbda3f84d
function plot_state()
X = repeat(xitp(xs), size(yitp(ys),1), 1)
Y = repeat(yitp(ys), 1, size(xitp(xs),2))
p = temperature_heatmap(T)
Nq = 4
quiver!(p, X[(Nq+1)÷2:Nq:end], Y[(Nq+1)÷2:Nq:end], quiver=(U[(Nq+1)÷2:Nq:end]./10., V[(Nq+1)÷2:Nq:end]./10.), color=:black, alpha=0.7)
plot!(p, xlims=(0., 1.), ylims=(-1.0, 1.0))
plot!(p, xlabel="longitudinal distance", ylabel="latitudinal distance")
plot!(p, clabel="Temperature")
as_png(p)
end
# ╔═╡ bd879bbe-12de-11eb-0d1d-93bba42b6ff9
begin
go
temperature_control_event_handled
nT = 50
for i = 1:nT
timestep!(t, T)
end
plot_state()
end
# ╔═╡ 3cc1218e-1307-11eb-1907-e7cd68f6af35
heatmap(xs', ys, ψ̂)
# ╔═╡ Cell order:
# ╟─0f8db6f4-2113-11eb-18b4-21a469c67f3a
# ╟─ed741ec6-1f75-11eb-03be-ad6284abaab8
# ╟─ac759b96-2114-11eb-24cb-d50b556f4142
# ╟─3a4a1aea-2118-11eb-30a9-57b87f2ddfae
# ╟─a60e5550-211a-11eb-3cf8-f9bae0a9efd3
# ╠═b1b5625e-211a-11eb-3ee1-3ba9c9cc375a
# ╠═65da5b38-12dc-11eb-3505-bdaf7834afaa
# ╠═b7077870-2b45-11eb-220f-6585a0c26f65
# ╠═490320c0-2818-11eb-1b72-f3c08c502e51
# ╠═9036dc6a-204e-11eb-305d-45e760e62bef
# ╠═fd07ee24-2067-11eb-0ac8-7b3da3993223
# ╠═79a0086c-2050-11eb-1974-49d430b5eecd
# ╠═1cea2b90-205d-11eb-0d06-7df64faf1b53
# ╠═dab0f406-2067-11eb-176d-9dab6819dc98
# ╠═d82eefe0-280e-11eb-1d94-4b2d95630f3c
# ╠═6b3b6030-2066-11eb-3343-e19284638efb
# ╠═16b72cfc-2114-11eb-257d-b7747a99e155
# ╠═b68ca886-2053-11eb-2e39-35c724ed3a3c
# ╠═918ae9c0-2810-11eb-0620-956ef6dac50c
# ╠═9b9e1b30-2810-11eb-2493-717b3949a3c5
# ╠═13f114d0-280b-11eb-2c89-67cc659372ce
# ╠═e0ed2f4a-2836-11eb-20e1-23f8567a435c
# ╠═60e62962-280b-11eb-063c-e99186efb59c
# ╠═ec3798f0-280b-11eb-3e26-9d40d35a6920
# ╠═09c49990-280c-11eb-3ad6-9dd0dd88376d
# ╠═443fb830-280b-11eb-017e-0d8a56cf7729
# ╠═c4424838-12e2-11eb-25eb-058344b39c8b
# ╠═96ed4c10-280a-11eb-0eba-139ca63247e3
# ╠═3b4e4722-12fe-11eb-238d-17aea2c23f58
# ╠═1a880910-2811-11eb-15db-158d2c8eb1a4
# ╠═ad1aec70-2811-11eb-0473-bbb02625902a
# ╠═42ea047e-2811-11eb-0e60-510310f813d8
# ╟─f5ae1756-12e9-11eb-1228-8f03879c154a
# ╟─f9824610-12e7-11eb-3e61-f96c900a0636
# ╠═5f6ca7c2-2816-11eb-2bdb-6502b84cc9c8
# ╠═87bfc240-12e3-11eb-03cc-756dc00efa6c
# ╠═440fe49a-12e5-11eb-1c08-f706f5f33c84
# ╟─9fe89d82-2833-11eb-2a39-5f94dd51d1ef
# ╠═bd879bbe-12de-11eb-0d1d-93bba42b6ff9
# ╠═bff76d60-2815-11eb-2dc3-8f92794a5056
# ╠═4a709370-2818-11eb-1302-0f877986e7b6
# ╠═396ad562-2837-11eb-0a65-55ece65a7da6
# ╠═439f7984-2837-11eb-2e08-75d8e90d4b9f
# ╠═2ae5d9ee-280b-11eb-1bfc-c79d2742eee8
# ╠═30539f30-280b-11eb-1219-9b1d7d8c8cfb
# ╠═06367924-2839-11eb-1de9-51833725a659
# ╠═b2c066b0-2815-11eb-0373-453a84ff3d3b
# ╠═c0e46442-27fb-11eb-2c94-15edbda3f84d
# ╠═b0a94630-2833-11eb-1f37-63e7f5beaf10
# ╠═3cc1218e-1307-11eb-1907-e7cd68f6af35
# ╠═3b0e16a2-12e5-11eb-3130-c763c1c85182
# ╠═1528ed7e-12e5-11eb-34cf-112d2baa7353
# ╟─bb084ace-12e2-11eb-2dfc-111e90eabfdd
# ╠═627eb1a4-12e2-11eb-30d1-c1ad292d1522
# ╠═e3ee80c0-12dd-11eb-110a-c336bb978c51
# ╠═9c8a7e5a-12dd-11eb-1b99-cd1d52aefa1d