-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmultiple_knapsack_main.cpp
300 lines (262 loc) · 10.5 KB
/
multiple_knapsack_main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
/**
* Multiple knapsack problem
*
* Problem description:
* See https://github.com/fontanf/orproblems/blob/main/orproblems/multiple_knapsack.hpp
*
* The linear programming formulation of the problem based on Dantzig–Wolfe
* decomposition is written as follows:
*
* Variables:
* - yᵢᵏ ∈ {0, 1} representing a set of items for knapsack i.
* yᵢᵏ = 1 iff the corresponding set of items is selected for knapsack i.
* xⱼᵢᵏ = 1 iff yᵢᵏ contains item j, otherwise 0.
*
* Program:
*
* max ∑ᵢ ∑ₖ (∑ⱼ pⱼ xⱼᵢᵏ) yᵢᵏ
* Note that (∑ⱼ pⱼ xⱼᵢᵏ) is a constant.
*
* 1 <= ∑ₖ yᵢᵏ <= 1 for all knapsack i
* (not more than 1 packing selected for each knapsack)
* Dual variables: uᵢ
* 0 <= ∑ᵢ∑ₖ xⱼᵢᵏ yᵢᵏ <= 1 for all items j
* (each item selected at most once)
* Dual variables: vⱼ
*
* The pricing problem consists in finding a variable of positive reduced cost.
* The reduced cost of a variable yᵢᵏ is given by:
* rc(yᵢᵏ) = ∑ⱼ pⱼ xⱼᵢᵏ - uᵢ - ∑ⱼ xⱼᵢᵏ vⱼ
* = ∑ⱼ (pⱼ - vⱼ) xⱼᵢᵏ - uᵢ
*
* Therefore, finding a variable of maximum reduced cost reduces to solving
* m Knapsack Problems with items with profit (pⱼ - vⱼ).
*
*/
#include "read_args.hpp"
#include "columngenerationsolver/commons.hpp"
#include "orproblems/packing/multiple_knapsack.hpp"
#include "knapsacksolver/knapsack/instance_builder.hpp"
#include "knapsacksolver/knapsack/algorithms/dynamic_programming_primal_dual.hpp"
using namespace orproblems::multiple_knapsack;
using Value = columngenerationsolver::Value;
using ColIdx = columngenerationsolver::ColIdx;
using RowIdx = columngenerationsolver::RowIdx;
class PricingSolver: public columngenerationsolver::PricingSolver
{
public:
PricingSolver(const Instance& instance):
instance_(instance),
fixed_items_(instance.number_of_items()),
fixed_knapsacks_(instance.number_of_knapsacks())
{ }
virtual inline std::vector<std::shared_ptr<const columngenerationsolver::Column>> initialize_pricing(
const std::vector<std::pair<std::shared_ptr<const columngenerationsolver::Column>, Value>>& fixed_columns);
virtual inline PricingOutput solve_pricing(
const std::vector<Value>& duals);
private:
const Instance& instance_;
std::vector<int8_t> fixed_items_;
std::vector<int8_t> fixed_knapsacks_;
std::vector<ItemId> kp2mkp_;
};
inline columngenerationsolver::Model get_model(const Instance& instance)
{
columngenerationsolver::Model model;
model.objective_sense = optimizationtools::ObjectiveDirection::Maximize;
// Add knapsack constraints.
for (KnapsackId knapsack_id = 0;
knapsack_id < instance.number_of_knapsacks();
++knapsack_id) {
columngenerationsolver::Row row;
row.lower_bound = 1;
row.upper_bound = 1;
row.coefficient_lower_bound = 0;
row.coefficient_upper_bound = 1;
model.rows.push_back(row);
}
// Add item constraints.
for (ItemId item_id = 0;
item_id < instance.number_of_items();
++item_id) {
columngenerationsolver::Row row;
row.lower_bound = 0;
row.upper_bound = 1;
row.coefficient_lower_bound = 0;
row.coefficient_upper_bound = 1;
model.rows.push_back(row);
}
// Pricing solver.
model.pricing_solver = std::unique_ptr<columngenerationsolver::PricingSolver>(
new PricingSolver(instance));
return model;
}
std::vector<std::shared_ptr<const columngenerationsolver::Column>> PricingSolver::initialize_pricing(
const std::vector<std::pair<std::shared_ptr<const columngenerationsolver::Column>, Value>>& fixed_columns)
{
std::fill(fixed_items_.begin(), fixed_items_.end(), -1);
std::fill(fixed_knapsacks_.begin(), fixed_knapsacks_.end(), -1);
for (const auto& p: fixed_columns) {
const columngenerationsolver::Column& column = *(p.first);
Value value = p.second;
if (value < 0.5)
continue;
for (const columngenerationsolver::LinearTerm& element: column.elements) {
if (element.coefficient < 0.5)
continue;
if (element.row < instance_.number_of_knapsacks()) {
fixed_knapsacks_[element.row] = 1;
} else {
fixed_items_[element.row - instance_.number_of_knapsacks()] = 1;
}
}
}
return {};
}
PricingSolver::PricingOutput PricingSolver::solve_pricing(
const std::vector<Value>& duals)
{
PricingOutput output;
Value reduced_cost_bound = 0.0;
for (KnapsackId knapsack_id = 0;
knapsack_id < instance_.number_of_knapsacks();
++knapsack_id) {
if (fixed_knapsacks_[knapsack_id] == 1)
continue;
// Build subproblem instance.
knapsacksolver::knapsack::InstanceFromFloatProfitsBuilder kp_instance_builder;
Weight capacity = instance_.capacity(knapsack_id);
kp2mkp_.clear();
for (ItemId item_id = 0;
item_id < instance_.number_of_items();
++item_id) {
if (fixed_items_[item_id] == 1)
continue;
const Item& item = instance_.item(item_id);
double profit = item.profit
- duals[instance_.number_of_knapsacks() + item_id];
if (profit <= 0 || item.weight > instance_.capacity(knapsack_id))
continue;
kp_instance_builder.add_item(profit, item.weight);
kp2mkp_.push_back(item_id);
}
kp_instance_builder.set_capacity(capacity);
knapsacksolver::knapsack::Instance kp_instance = kp_instance_builder.build();
// Solve subproblem instance.
knapsacksolver::knapsack::DynamicProgrammingPrimalDualParameters kp_parameters;
kp_parameters.verbosity_level = 0;
auto kp_output = knapsacksolver::knapsack::dynamic_programming_primal_dual(kp_instance, kp_parameters);
// Retrieve column.
columngenerationsolver::Column column;
column.elements.push_back({knapsack_id, 1});
for (knapsacksolver::knapsack::ItemId kp_item_id = 0;
kp_item_id < kp_instance.number_of_items();
++kp_item_id) {
if (kp_output.solution.contains(kp_item_id)) {
ItemId item_id = kp2mkp_[kp_item_id];
columngenerationsolver::LinearTerm element;
element.row = instance_.number_of_knapsacks() + item_id;
element.coefficient = 1;
column.elements.push_back(element);
column.objective_coefficient += instance_.item(item_id).profit;
}
}
output.columns.push_back(std::shared_ptr<const columngenerationsolver::Column>(new columngenerationsolver::Column(column)));
reduced_cost_bound = (std::max)(
reduced_cost_bound,
columngenerationsolver::compute_reduced_cost(column, duals));
}
output.overcost = instance_.number_of_knapsacks() * reduced_cost_bound;
return output;
}
inline void write_solution(
const Instance& instance,
const columngenerationsolver::Solution& solution,
const std::string& certificate_path)
{
std::ofstream file(certificate_path);
if (!file.good()) {
throw std::runtime_error(
"Unable to open file \"" + certificate_path + "\".");
}
std::vector<std::vector<ItemId>> sol(instance.number_of_knapsacks());
for (auto colval: solution.columns()) {
const columngenerationsolver::Column& column = *(colval.first);
//Value value = colval.second;
// Get the knapsack id.
KnapsackId knapsack_id = -1;
for (const columngenerationsolver::LinearTerm& element: column.elements) {
if (element.coefficient > 0.5
&& element.row < instance.number_of_knapsacks()) {
knapsack_id = element.row;
}
}
// Get the items.
for (const columngenerationsolver::LinearTerm& element: column.elements) {
if (element.coefficient > 0.5
&& element.row >= instance.number_of_knapsacks()) {
ItemId item_id = element.row - instance.number_of_knapsacks();
sol[knapsack_id].push_back(item_id);
}
}
}
// Write.
for (KnapsackId knapsack_id = 0;
knapsack_id < instance.number_of_knapsacks();
++knapsack_id) {
file << sol[knapsack_id].size() << std::endl;
for (ItemId item_id: sol[knapsack_id])
file << " " << item_id;
file << std::endl;
}
}
int main(int argc, char *argv[])
{
// Setup options.
boost::program_options::options_description desc = columngenerationsolver::setup_args();
desc.add_options()
//("guide,g", boost::program_options::value<GuideId>(), "")
;
boost::program_options::variables_map vm;
boost::program_options::store(boost::program_options::parse_command_line(argc, argv, desc), vm);
if (vm.count("help")) {
std::cout << desc << std::endl;;
throw "";
}
try {
boost::program_options::notify(vm);
} catch (const boost::program_options::required_option& e) {
std::cout << desc << std::endl;;
throw "";
}
// Create instance.
InstanceBuilder instance_builder;
instance_builder.read(
vm["input"].as<std::string>(),
vm["format"].as<std::string>());
const Instance instance = instance_builder.build();
// Create model.
columngenerationsolver::Model model = get_model(instance);
// Solve.
auto output = run(
model,
[&instance](
const columngenerationsolver::Solution& solution,
const std::string& certificate_path)
{
write_solution(instance, solution, certificate_path);
},
vm);
// Run checker.
if (vm.count("certificate")
&& vm["print-checker"].as<int>() > 0) {
std::cout << std::endl
<< "Checker" << std::endl
<< "-------" << std::endl;
instance.check(
vm["certificate"].as<std::string>(),
std::cout,
vm["print-checker"].as<int>());
}
return 0;
}