-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph.py
76 lines (58 loc) · 1.74 KB
/
graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import scraper
import networkx as nx
import json
CHARACTERS = scraper.characters
NATIONS = scraper.nations
NPCS = scraper.npcs
def add_nodes(G, list_of_nodes):
for sublist in list_of_nodes:
G.add_nodes_from(sublist)
def add_edges(G, edges):
for nation, subject_list in edges.items():
for subject in subject_list:
G.add_edge(nation, subject)
def graph():
print("===")
print("Generating graph")
G = nx.DiGraph()
add_nodes(G, scraper.list_of_nodes)
add_edges(G, scraper.character_nations)
return (G)
def color_nodes(G):
node_colors = []
for node in G.nodes():
if node in NATIONS:
group = "nation"
color = "red"
elif node in CHARACTERS:
group = "character"
color = "green"
elif node in NPCS:
group = "npc"
color = "gray"
node_colors.append(color)
G.nodes[node]["group"] = group
G.nodes[node]["color"] = color
return (G, node_colors)
def size_nodes(G):
node_sizes = []
degrees = dict(G.degree())
min_size = 20
max_size = 100
scaling_factor = (max_size - min_size) / \
(max(degrees.values()) - min(degrees.values()))
node_sizes = [(min_size + (degrees[node] - min(degrees.values()))
* scaling_factor)for node in G.nodes()]
for node, size in zip(G.nodes(), node_sizes):
G.nodes[node]['size'] = size
return (G, node_sizes)
def write_graph(G):
nx.write_graphml(G, "./Graph/graph.graphml")
data = nx.node_link_data(G)
with open("./Graph/graph.json", "w") as f:
json.dump(data, f, indent=4)
G = graph()
G, node_colors = color_nodes(G)
G, node_sizes = size_nodes(G)
print(G)
write_graph(G)