-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
157 lines (137 loc) · 5.16 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import json
import logging
import os
import sys
from collections import Counter
import glob
import numpy as np
import tiktoken
from sentencepiece import SentencePieceProcessor
from tqdm import tqdm
from transformers import AutoTokenizer, PreTrainedTokenizerFast
from utils import validate_tokenizer, encode
os.environ["TIKTOKEN_CACHE_DIR"] = ""
logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
def get_content_key(path: str) -> str:
with open(path, "r", encoding="utf-8") as f:
line = f.readline().rstrip()
try:
x = json.loads(line)
except UnicodeDecodeError as e:
print(f"Error when trying to decode '{line}': {str(e)}")
raise
for k in ["text", "content"]:
if k in x:
return k
raise RuntimeError(f"Unable to determine key for {path}")
def get_datasets() -> dict:
dataset = {}
for path in glob.glob("data/*/test/*.jsonl"):
name = path.split("/")[-1].replace(".jsonl", "")
dataset[name] = {"path": path}
return dataset
core_models = {
"gpt2": "gpt2",
"mpt": "mosaicml/mpt-7b-instruct",
"bloom": "bigscience/bloom-7b1",
"gpt-neox": "EleutherAI/gpt-neox-20b",
"falcon": "tiiuae/falcon-40b",
"pythia": "EleutherAI/pythia-12b",
"codet5": "Salesforce/codet5-small",
"incoder": "facebook/incoder-1B",
"starcoder": "bigcode/starcoder",
"replit": "replit/replit-code-v1_5-3b",
"codegen": "Salesforce/codegen-350M-mono",
"byt5": "google/byt5-small",
"deepseek-coder": "deepseek-ai/deepseek-coder-1.3b-instruct",
"Yi-6B": "01-ai/Yi-6B",
"mistral": "mistralai/Mistral-7B-v0.1",
"santacoder": "bigcode/santacoder",
"llama": "meta-llama/Llama-2-7b",
}
def get_tokenizer_name(model_path: str) -> str:
tokenizer_name = model_path.split("/")[-1]
if model_path.endswith(".json"):
tokenizer_name = tokenizer_name.replace(".json", "")
if model_path.endswith(".model"):
tokenizer_name = tokenizer_name.replace(".model", "")
return tokenizer_name
def load_tokenizer(model_path: str):
tokenizer_name = get_tokenizer_name(model_path)
if model_path.endswith(".json"):
tokenizer = PreTrainedTokenizerFast(tokenizer_file=model_path)
elif model_path.endswith(".model"):
tokenizer = SentencePieceProcessor(model_file=model_path)
elif model_path in core_models:
tokenizer_name = model_path
pretrained_name = core_models[model_path]
tokenizer = AutoTokenizer.from_pretrained(
pretrained_name, trust_remote_code=True
)
elif model_path == "gpt4":
tokenizer = tiktoken.encoding_for_model("gpt-4")
tokenizer_name = "gpt4"
elif model_path == "llama":
tokenizer = SentencePieceProcessor(model_file="tokenizers/llama.model")
tokenizer_name = "llama"
else:
raise RuntimeError(f"Unknown model type: {model_path}")
return tokenizer, tokenizer_name
def eval(
model_path: str,
eval_dir: str,
max_sample_size=1000,
):
tokenizer, tokenizer_name = load_tokenizer(model_path)
assert validate_tokenizer(
tokenizer_name, tokenizer, verbose=True
), f"{tokenizer_name} validation failed"
logging.info(f"Evaluating model: {model_path}")
datasets = get_datasets()
data = {}
for dataset_name in datasets.keys():
dataset_path = datasets[dataset_name]["path"]
print(f"Processing {dataset_name}: {dataset_path}")
content_key = get_content_key(dataset_path)
count = 0
with open(dataset_path, "r") as f:
data[dataset_name] = {"lengths": [], "vocab_counter": Counter()}
for line in tqdm(f, total=max_sample_size):
try:
text = json.loads(line)[content_key]
except:
continue
if text == "":
continue
encoded_text = encode(tokenizer, text)
data[dataset_name]["lengths"].append(len(encoded_text))
if isinstance(encoded_text, np.ndarray):
encoded_text = encoded_text.tolist()
data[dataset_name]["vocab_counter"].update(encoded_text)
count += 1
if count > max_sample_size:
break
# save data
out_path = f"{eval_dir}/{tokenizer_name}.eval.json"
with open(out_path, "w") as f:
json.dump(data, f, indent=4)
logging.info(f"Saved data to {out_path}")
if __name__ == "__main__":
to_eval = (
list(core_models.keys())
+ glob.glob("tokenizers/*.json")
+ glob.glob("tokenizers/*.model")
)
print(f"Found {len(to_eval)} tokenizers to evaluate")
for model_path in tqdm(to_eval):
tokenizer, tokenizer_name = load_tokenizer(model_path)
if os.path.exists(f"evals/{tokenizer_name}.eval.json"):
print(f"Skipping {tokenizer_name} as it already exists")
continue
if not validate_tokenizer(tokenizer_name, tokenizer, verbose=True):
print(f"Skipping {tokenizer_name} as it does not validate")
continue
eval(
model_path,
eval_dir="evals",
)