Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Benchmark HiFive Premier P550 #17

Closed
geerlingguy opened this issue Feb 6, 2025 · 3 comments
Closed

Benchmark HiFive Premier P550 #17

geerlingguy opened this issue Feb 6, 2025 · 3 comments

Comments

@geerlingguy
Copy link
Owner

geerlingguy commented Feb 6, 2025

See: geerlingguy/sbc-reviews#65

To install Ollama on RISC-V, I followed this process:

# Install cmake
sudo apt install -y cmake

# Install Go (download link is under 'Unstable versions')
wget https://go.dev/dl/go1.24rc3.linux-riscv64.tar.gz
sudo rm -rf /usr/local/go && sudo tar -C /usr/local -xzf go1.24rc3.linux-riscv64.tar.gz
export PATH=$PATH:/usr/local/go/bin

$ go version
go version go1.24rc3 linux/riscv64

# Build ollama
git clone --recurse-submodules https://github.com/mengzhuo/ollama.git
cd ollama
go build .
sudo ln -s `pwd`/ollama /usr/local/bin/ollama

# Run ollama and test a tiny model (approx. 400 MB)
ollama serve > /dev/null 2>&1 &
ollama run qwen:0.5b

More details: geerlingguy/sbc-reviews#65 (comment) — and fully documented in my blog post: How to build Ollama to run LLMs on RISC-V Linux.

@geerlingguy
Copy link
Owner Author

Running benchmark 3 times using model: llama3.2:3b (13.5W)

Run Eval Rate (Tokens/Second)
1 0.24 tokens/s
2 0.24 tokens/s
3 0.24 tokens/s
Average Eval Rate .24 tokens/second

Running benchmark 3 times using model: llama3.1:8b (13.6W)

Run Eval Rate (Tokens/Second)
1 0.10 tokens/s
2 0.10 tokens/s
3 0.10 tokens/s
Average Eval Rate .10 tokens/second

Running benchmark 3 times using model: llama2:13b (13.6W)

Run Eval Rate (Tokens/Second)
1 0.10 tokens/s
2 0.12 tokens/s
3 0.12 tokens/s
Average Eval Rate .11 tokens/second

@geerlingguy
Copy link
Owner Author

On the first run-through, Deepseek wouldn't load (got Error: pull model manifest: 500: {"errors":[{"code":"INTERNAL_ERROR","message":"internal error"}), but this morning I am running it again, and the models are pulling successfully.

@geerlingguy
Copy link
Owner Author

geerlingguy commented Feb 6, 2025

Running benchmark 3 times using model: deepseek-r1:1.5b (13.5W)

Run Eval Rate (Tokens/Second)
1 0.49 tokens/s
2 0.49 tokens/s
3 0.49 tokens/s
Average Eval Rate .49 tokens/second

...

After four hours I gave up trying to run deepseek-r1:8b or 14b :)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant