-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathparaphrasee_env.py
128 lines (102 loc) · 5.92 KB
/
paraphrasee_env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
"""Defines environment dynamics for paraphrase generation task as RL problem"""
import torch
import numpy as np
import random
import os
import config
import data
import model_evaluation
import supervised_model as sm
from train_ESIM import load_ESIM_model
DEVICE = config.DEVICE
MAX_LENGTH = config.MAX_LENGTH
SOS_token = config.SOS_token
EOS_token = config.EOS_token
train_pairs = data.TRAIN_PAIRS
val_pairs = data.VAL_PAIRS
test_pairs = data.TEST_PAIRS
vocab_index = data.VOCAB_INDEX
#%%
class ParaPhraseeEnvironment(object):
"""Define the paraphrase generation task in the style of OpenAI Gym"""
def __init__(self, source_sentence, target_sentence, supervised_encoder,
reward_function, similarity_model_name, sentence_pairs):
self.name = 'ParaPhrasee'
self.source_sentence = source_sentence # Stored as string
self.target_sentence = target_sentence # Stored as string
self.predicted_words = []
self.reward_function = reward_function # String ex. BLEU
self.similarity_model_name = similarity_model_name
self.ESIM_model_name = 'ESIM_noisy_3'
self.similarity_model, self.fluency_model, self.ESIM_model, \
self.logr_model, self.std_scaler, \
self.similarity_dist, self.fluency_dist, self.ESIM_dist = model_evaluation.init_eval_models(
reward_function=self.reward_function, similarity_model_name=self.similarity_model_name,
ESIM_model_name=self.ESIM_model_name)
self.sentence_pairs = sentence_pairs
self.supervised_encoder = supervised_encoder
self.max_length = MAX_LENGTH
self.max_steps = self.max_length
self.done = 0
self.ep_reward = 0
self.gamma = 0.999
self.changing_input = True
self.action_tensor = torch.tensor([[SOS_token]], device=DEVICE)
self.encoder_outputs = torch.zeros(MAX_LENGTH, supervised_encoder.hidden_size, device=DEVICE)
self.context, _, _ = sm.embed_input_sentence([self.source_sentence, self.target_sentence], supervised_encoder,
max_length=self.max_length)
self.state = (self.action_tensor, self.context)
self.action_space = vocab_index.n_words
def pred_sentence(self):
"""Returns the sentence prediction from the environment"""
output_sentence = ' '.join(self.predicted_words)
return output_sentence
def supervised_baseline(self, supervised_decoder):
"""Returns the supervised model prediction for the same sentence for comparative purposes"""
supervised_decoder_pred, _, baseline_reward = sm.validationMetricPerformance(
input_pairs=[(self.source_sentence, self.target_sentence)], encoder=self.supervised_encoder,
decoder=supervised_decoder, similarity_model=self.similarity_model, fluency_model=self.fluency_model,
ESIM_model=self.ESIM_model, logr_model=self.logr_model, std_scaler=self.std_scaler,
similarity_dist=self.similarity_dist, fluency_dist=self.fluency_dist, ESIM_dist=self.ESIM_dist,
vocab_index=vocab_index, verbose=False, metric=self.reward_function)
supervised_decoder_pred = supervised_decoder_pred[0][1]
return supervised_decoder_pred, np.around(baseline_reward, 3)
def step(self, action, decoder_hidden):
"""Key function which represents the transition dynamics.
given an action (word choice) this returns the updated state FROM THE AGENT
is effectively the decoder
All this is effectively doing is checking if the episode is over and returning the
appropirate reward, else updating the state based on the decoder outputs"""
# Check whether episode is over
if (action == EOS_token) or (len(self.predicted_words)>= self.max_length):
self.state = action, decoder_hidden
RL_model_reward = model_evaluation.performance_metrics(
target_sentence=self.target_sentence, pred_sentence=self.pred_sentence(),
similarity_model=self.similarity_model, fluency_model=self.fluency_model, ESIM_model=self.ESIM_model,
logr_model=self.logr_model, std_scaler=self.std_scaler,
similarity_dist=self.similarity_dist, fluency_dist=self.fluency_dist, ESIM_dist=self.ESIM_dist,
vocab_index=vocab_index, metric=self.reward_function)
# Calculate relative reward
self.ep_reward = np.around(RL_model_reward, 3)
self.done = 1
else:
self.state = action, decoder_hidden
# Add word to pred words
self.predicted_words.append(vocab_index.index2word[action.item()])
return self.state, self.ep_reward, self.done, None
def reset(self):
"""Resets the environment to a random initial state through picking a random sentence from the
sentence input pairs"""
if self.changing_input:
sentence_pair = random.choice(self.sentence_pairs)
self.source_sentence = sentence_pair[0] # Stored as string
self.target_sentence = sentence_pair[1] # Stored as string
self.predicted_words = []
self.ep_reward = 0
self.done = 0
self.action_tensor = torch.tensor([[SOS_token]], device=DEVICE)
self.encoder_outputs = torch.zeros(MAX_LENGTH, self.supervised_encoder.hidden_size, device=DEVICE)
self.context, _, _ = sm.embed_input_sentence([self.source_sentence, self.target_sentence],
self.supervised_encoder, max_length=self.max_length)
self.state = (self.action_tensor, self.context)
return self.state