-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathOct-20-2023_03-27-32.log
385 lines (379 loc) · 23.4 KB
/
Oct-20-2023_03-27-32.log
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
Fri 20 Oct 2023 03:27:32 INFO Change train stage from 'transductive_ft' to 'inductive_ft'
Fri 20 Oct 2023 03:27:32 INFO
General Hyper Parameters:
gpu_id = 0
use_gpu = True
seed = 2020
state = INFO
reproducibility = True
data_path = dataset/downstream/Pantry_mm_full
checkpoint_dir = saved
show_progress = True
save_dataset = False
dataset_save_path = None
save_dataloaders = False
dataloaders_save_path = None
log_wandb = False
Training Hyper Parameters:
epochs = 300
train_batch_size = 512
learner = adam
learning_rate = 0.001
neg_sampling = None
eval_step = 1
stopping_step = 10
clip_grad_norm = None
weight_decay = 0.0
loss_decimal_place = 4
Evaluation Hyper Parameters:
eval_args = {'split': {'LS': 'valid_and_test'}, 'order': 'TO', 'mode': 'full', 'group_by': 'user'}
repeatable = True
metrics = ['HIT', 'NDCG']
topk = [10, 50]
valid_metric = NDCG@10
valid_metric_bigger = True
eval_batch_size = 1024
metric_decimal_place = 4
Dataset Hyper Parameters:
field_separator =
seq_separator =
USER_ID_FIELD = user_id
ITEM_ID_FIELD = item_id
RATING_FIELD = rating
TIME_FIELD = timestamp
seq_len = None
LABEL_FIELD = label
threshold = None
NEG_PREFIX = neg_
load_col = {'inter': ['user_id', 'item_id_list', 'item_id']}
unload_col = None
unused_col = None
additional_feat_suffix = None
rm_dup_inter = None
val_interval = None
filter_inter_by_user_or_item = True
user_inter_num_interval = [0,inf)
item_inter_num_interval = [0,inf)
alias_of_user_id = None
alias_of_item_id = ['item_id_list']
alias_of_entity_id = None
alias_of_relation_id = None
preload_weight = None
normalize_field = None
normalize_all = None
ITEM_LIST_LENGTH_FIELD = item_length
LIST_SUFFIX = _list
MAX_ITEM_LIST_LENGTH = 50
POSITION_FIELD = position_id
HEAD_ENTITY_ID_FIELD = head_id
TAIL_ENTITY_ID_FIELD = tail_id
RELATION_ID_FIELD = relation_id
ENTITY_ID_FIELD = entity_id
benchmark_filename = ['train', 'valid', 'test']
Other Hyper Parameters:
wandb_project = recbole
require_pow = False
MODEL_TYPE = ModelType.SEQUENTIAL
n_layers = 2
n_heads = 4
hidden_size = 300
inner_size = 256
hidden_dropout_prob = 0.5
attn_dropout_prob = 0.5
hidden_act = gelu
layer_norm_eps = 1e-12
initializer_range = 0.02
loss_type = CE
item_drop_ratio = 0.2
item_drop_coefficient = 0.9
lambda = 0.001
gamma = 0.0001
plm_suffix = feat1CLS
plm_suffix_aug = feat2CLS
img_suffix = feat3CLS
id_type = id
modal_type = img_text
plm_size = 512
img_size = 512
temperature = 0.07
seq_mm_fusion = add
item_mm_fusion = dynamic_shared
transform = None
train_stage = inductive_ft
log_prefix = gpu4
log_suffix =
interest_ratio = 0.5
knn_local_ratio = 0.2
MODEL_INPUT_TYPE = InputType.POINTWISE
eval_type = EvaluatorType.RANKING
device = cuda
train_neg_sample_args = {'strategy': 'none'}
eval_neg_sample_args = {'strategy': 'full', 'distribution': 'uniform'}
Fri 20 Oct 2023 03:27:34 INFO Pantry_mm_full
The number of users: 13102
Average actions of users: 8.691015952980688
The number of items: 4899
Average actions of items: 23.24642711310739
The number of inters: 113861
The sparsity of the dataset: 99.82260966283076%
Remain Fields: ['user_id', 'item_id_list', 'item_id', 'item_length']
Fri 20 Oct 2023 03:27:35 INFO [Training]: train_batch_size = [512] negative sampling: [None]
Fri 20 Oct 2023 03:27:35 INFO [Evaluation]: eval_batch_size = [1024] eval_args: [{'split': {'LS': 'valid_and_test'}, 'order': 'TO', 'mode': 'full', 'group_by': 'user'}]
Fri 20 Oct 2023 03:27:38 INFO MISSRec(
(item_embedding): None
(position_embedding): Embedding(50, 300)
(trm_model): Transformer(
(encoder): TransformerEncoder(
(layers): ModuleList(
(0): TransformerEncoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=300, out_features=300, bias=True)
)
(linear1): Linear(in_features=300, out_features=256, bias=True)
(dropout): Dropout(p=0.5, inplace=False)
(linear2): Linear(in_features=256, out_features=300, bias=True)
(norm1): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(norm2): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout1): Dropout(p=0.5, inplace=False)
(dropout2): Dropout(p=0.5, inplace=False)
)
)
(norm): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
)
(decoder): TransformerDecoder(
(layers): ModuleList(
(0): TransformerDecoderLayer(
(self_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=300, out_features=300, bias=True)
)
(multihead_attn): MultiheadAttention(
(out_proj): NonDynamicallyQuantizableLinear(in_features=300, out_features=300, bias=True)
)
(linear1): Linear(in_features=300, out_features=256, bias=True)
(dropout): Dropout(p=0.5, inplace=False)
(linear2): Linear(in_features=256, out_features=300, bias=True)
(norm1): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(norm2): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(norm3): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout1): Dropout(p=0.5, inplace=False)
(dropout2): Dropout(p=0.5, inplace=False)
(dropout3): Dropout(p=0.5, inplace=False)
)
)
(norm): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
)
)
(LayerNorm): LayerNorm((300,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.5, inplace=False)
(loss_fct): CrossEntropyLoss()
(plm_embedding): Embedding(4899, 512, padding_idx=0)
(img_embedding): Embedding(4899, 512, padding_idx=0)
(text_adaptor): Linear(in_features=512, out_features=300, bias=True)
(img_adaptor): Linear(in_features=512, out_features=300, bias=True)
)
Trainable parameters: 1719513.0
Fri 20 Oct 2023 03:27:38 INFO Trainable parameters: ['fusion_factor', 'position_embedding.weight', 'trm_model.encoder.layers.0.self_attn.in_proj_weight', 'trm_model.encoder.layers.0.self_attn.in_proj_bias', 'trm_model.encoder.layers.0.self_attn.out_proj.weight', 'trm_model.encoder.layers.0.self_attn.out_proj.bias', 'trm_model.encoder.layers.0.linear1.weight', 'trm_model.encoder.layers.0.linear1.bias', 'trm_model.encoder.layers.0.linear2.weight', 'trm_model.encoder.layers.0.linear2.bias', 'trm_model.encoder.layers.0.norm1.weight', 'trm_model.encoder.layers.0.norm1.bias', 'trm_model.encoder.layers.0.norm2.weight', 'trm_model.encoder.layers.0.norm2.bias', 'trm_model.encoder.norm.weight', 'trm_model.encoder.norm.bias', 'trm_model.decoder.layers.0.self_attn.in_proj_weight', 'trm_model.decoder.layers.0.self_attn.in_proj_bias', 'trm_model.decoder.layers.0.self_attn.out_proj.weight', 'trm_model.decoder.layers.0.self_attn.out_proj.bias', 'trm_model.decoder.layers.0.multihead_attn.in_proj_weight', 'trm_model.decoder.layers.0.multihead_attn.in_proj_bias', 'trm_model.decoder.layers.0.multihead_attn.out_proj.weight', 'trm_model.decoder.layers.0.multihead_attn.out_proj.bias', 'trm_model.decoder.layers.0.linear1.weight', 'trm_model.decoder.layers.0.linear1.bias', 'trm_model.decoder.layers.0.linear2.weight', 'trm_model.decoder.layers.0.linear2.bias', 'trm_model.decoder.layers.0.norm1.weight', 'trm_model.decoder.layers.0.norm1.bias', 'trm_model.decoder.layers.0.norm2.weight', 'trm_model.decoder.layers.0.norm2.bias', 'trm_model.decoder.layers.0.norm3.weight', 'trm_model.decoder.layers.0.norm3.bias', 'trm_model.decoder.norm.weight', 'trm_model.decoder.norm.bias', 'LayerNorm.weight', 'LayerNorm.bias', 'text_adaptor.weight', 'text_adaptor.bias', 'img_adaptor.weight', 'img_adaptor.bias']
Fri 20 Oct 2023 03:27:40 INFO Discovering multi-modal user interest before 0-th epoch
Fri 20 Oct 2023 03:27:43 INFO Finish multi-modal interest discovery before 0-th epoch
Fri 20 Oct 2023 03:28:10 INFO epoch 0 training [time: 30.29s, train loss: 1391.7429]
Fri 20 Oct 2023 03:28:14 INFO epoch 0 evaluating [time: 3.80s, valid_score: 0.023200]
Fri 20 Oct 2023 03:28:14 INFO valid result:
hit@10 : 0.0498 hit@50 : 0.1433 ndcg@10 : 0.0232 ndcg@50 : 0.0429
Fri 20 Oct 2023 03:28:14 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:28:14 INFO Discovering multi-modal user interest before 1-th epoch
Fri 20 Oct 2023 03:28:14 INFO Finish multi-modal interest discovery before 1-th epoch
Fri 20 Oct 2023 03:28:42 INFO epoch 1 training [time: 27.81s, train loss: 1354.8371]
Fri 20 Oct 2023 03:28:45 INFO epoch 1 evaluating [time: 3.80s, valid_score: 0.025900]
Fri 20 Oct 2023 03:28:45 INFO valid result:
hit@10 : 0.0567 hit@50 : 0.1559 ndcg@10 : 0.0259 ndcg@50 : 0.0469
Fri 20 Oct 2023 03:28:46 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:28:46 INFO Discovering multi-modal user interest before 2-th epoch
Fri 20 Oct 2023 03:28:46 INFO Finish multi-modal interest discovery before 2-th epoch
Fri 20 Oct 2023 03:29:13 INFO epoch 2 training [time: 27.89s, train loss: 1340.1628]
Fri 20 Oct 2023 03:29:17 INFO epoch 2 evaluating [time: 3.79s, valid_score: 0.028300]
Fri 20 Oct 2023 03:29:17 INFO valid result:
hit@10 : 0.0621 hit@50 : 0.1601 ndcg@10 : 0.0283 ndcg@50 : 0.049
Fri 20 Oct 2023 03:29:17 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:29:17 INFO Discovering multi-modal user interest before 3-th epoch
Fri 20 Oct 2023 03:29:17 INFO Finish multi-modal interest discovery before 3-th epoch
Fri 20 Oct 2023 03:29:43 INFO epoch 3 training [time: 25.56s, train loss: 1331.2374]
Fri 20 Oct 2023 03:29:46 INFO epoch 3 evaluating [time: 3.06s, valid_score: 0.030100]
Fri 20 Oct 2023 03:29:46 INFO valid result:
hit@10 : 0.0637 hit@50 : 0.1691 ndcg@10 : 0.0301 ndcg@50 : 0.0525
Fri 20 Oct 2023 03:29:46 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:29:46 INFO Discovering multi-modal user interest before 4-th epoch
Fri 20 Oct 2023 03:29:46 INFO Finish multi-modal interest discovery before 4-th epoch
Fri 20 Oct 2023 03:30:12 INFO epoch 4 training [time: 25.71s, train loss: 1325.3047]
Fri 20 Oct 2023 03:30:16 INFO epoch 4 evaluating [time: 3.85s, valid_score: 0.030400]
Fri 20 Oct 2023 03:30:16 INFO valid result:
hit@10 : 0.0663 hit@50 : 0.1714 ndcg@10 : 0.0304 ndcg@50 : 0.0528
Fri 20 Oct 2023 03:30:16 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:30:16 INFO Discovering multi-modal user interest before 5-th epoch
Fri 20 Oct 2023 03:30:16 INFO Finish multi-modal interest discovery before 5-th epoch
Fri 20 Oct 2023 03:30:44 INFO epoch 5 training [time: 28.11s, train loss: 1320.6665]
Fri 20 Oct 2023 03:30:48 INFO epoch 5 evaluating [time: 3.72s, valid_score: 0.032000]
Fri 20 Oct 2023 03:30:48 INFO valid result:
hit@10 : 0.0681 hit@50 : 0.172 ndcg@10 : 0.032 ndcg@50 : 0.0541
Fri 20 Oct 2023 03:30:48 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:30:48 INFO Discovering multi-modal user interest before 6-th epoch
Fri 20 Oct 2023 03:30:48 INFO Finish multi-modal interest discovery before 6-th epoch
Fri 20 Oct 2023 03:31:16 INFO epoch 6 training [time: 28.00s, train loss: 1317.7146]
Fri 20 Oct 2023 03:31:20 INFO epoch 6 evaluating [time: 3.72s, valid_score: 0.032000]
Fri 20 Oct 2023 03:31:20 INFO valid result:
hit@10 : 0.0674 hit@50 : 0.173 ndcg@10 : 0.032 ndcg@50 : 0.0544
Fri 20 Oct 2023 03:31:20 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:31:20 INFO Discovering multi-modal user interest before 7-th epoch
Fri 20 Oct 2023 03:31:20 INFO Finish multi-modal interest discovery before 7-th epoch
Fri 20 Oct 2023 03:31:48 INFO epoch 7 training [time: 28.08s, train loss: 1313.6841]
Fri 20 Oct 2023 03:31:52 INFO epoch 7 evaluating [time: 3.84s, valid_score: 0.032500]
Fri 20 Oct 2023 03:31:52 INFO valid result:
hit@10 : 0.07 hit@50 : 0.1723 ndcg@10 : 0.0325 ndcg@50 : 0.0542
Fri 20 Oct 2023 03:31:52 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:31:52 INFO Discovering multi-modal user interest before 8-th epoch
Fri 20 Oct 2023 03:31:52 INFO Finish multi-modal interest discovery before 8-th epoch
Fri 20 Oct 2023 03:32:18 INFO epoch 8 training [time: 25.24s, train loss: 1311.6634]
Fri 20 Oct 2023 03:32:21 INFO epoch 8 evaluating [time: 3.11s, valid_score: 0.032700]
Fri 20 Oct 2023 03:32:21 INFO valid result:
hit@10 : 0.069 hit@50 : 0.1758 ndcg@10 : 0.0327 ndcg@50 : 0.0554
Fri 20 Oct 2023 03:32:21 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:32:21 INFO Discovering multi-modal user interest before 9-th epoch
Fri 20 Oct 2023 03:32:21 INFO Finish multi-modal interest discovery before 9-th epoch
Fri 20 Oct 2023 03:32:47 INFO epoch 9 training [time: 26.19s, train loss: 1309.2038]
Fri 20 Oct 2023 03:32:51 INFO epoch 9 evaluating [time: 3.77s, valid_score: 0.033700]
Fri 20 Oct 2023 03:32:51 INFO valid result:
hit@10 : 0.0711 hit@50 : 0.1762 ndcg@10 : 0.0337 ndcg@50 : 0.056
Fri 20 Oct 2023 03:32:51 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:32:51 INFO Discovering multi-modal user interest before 10-th epoch
Fri 20 Oct 2023 03:32:51 INFO Finish multi-modal interest discovery before 10-th epoch
Fri 20 Oct 2023 03:33:19 INFO epoch 10 training [time: 28.01s, train loss: 1306.7862]
Fri 20 Oct 2023 03:33:23 INFO epoch 10 evaluating [time: 3.75s, valid_score: 0.032800]
Fri 20 Oct 2023 03:33:23 INFO valid result:
hit@10 : 0.0698 hit@50 : 0.1753 ndcg@10 : 0.0328 ndcg@50 : 0.0553
Fri 20 Oct 2023 03:33:23 INFO Discovering multi-modal user interest before 11-th epoch
Fri 20 Oct 2023 03:33:23 INFO Finish multi-modal interest discovery before 11-th epoch
Fri 20 Oct 2023 03:33:51 INFO epoch 11 training [time: 27.96s, train loss: 1305.1149]
Fri 20 Oct 2023 03:33:55 INFO epoch 11 evaluating [time: 3.82s, valid_score: 0.034200]
Fri 20 Oct 2023 03:33:55 INFO valid result:
hit@10 : 0.0721 hit@50 : 0.1783 ndcg@10 : 0.0342 ndcg@50 : 0.0568
Fri 20 Oct 2023 03:33:55 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:33:55 INFO Discovering multi-modal user interest before 12-th epoch
Fri 20 Oct 2023 03:33:55 INFO Finish multi-modal interest discovery before 12-th epoch
Fri 20 Oct 2023 03:34:23 INFO epoch 12 training [time: 27.68s, train loss: 1303.4554]
Fri 20 Oct 2023 03:34:26 INFO epoch 12 evaluating [time: 3.81s, valid_score: 0.033400]
Fri 20 Oct 2023 03:34:26 INFO valid result:
hit@10 : 0.0721 hit@50 : 0.1782 ndcg@10 : 0.0334 ndcg@50 : 0.056
Fri 20 Oct 2023 03:34:26 INFO Discovering multi-modal user interest before 13-th epoch
Fri 20 Oct 2023 03:34:26 INFO Finish multi-modal interest discovery before 13-th epoch
Fri 20 Oct 2023 03:34:52 INFO epoch 13 training [time: 25.62s, train loss: 1301.5655]
Fri 20 Oct 2023 03:34:55 INFO epoch 13 evaluating [time: 3.21s, valid_score: 0.034600]
Fri 20 Oct 2023 03:34:55 INFO valid result:
hit@10 : 0.073 hit@50 : 0.1808 ndcg@10 : 0.0346 ndcg@50 : 0.0575
Fri 20 Oct 2023 03:34:55 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:34:55 INFO Discovering multi-modal user interest before 14-th epoch
Fri 20 Oct 2023 03:34:55 INFO Finish multi-modal interest discovery before 14-th epoch
Fri 20 Oct 2023 03:35:22 INFO epoch 14 training [time: 26.12s, train loss: 1300.7176]
Fri 20 Oct 2023 03:35:25 INFO epoch 14 evaluating [time: 3.83s, valid_score: 0.033300]
Fri 20 Oct 2023 03:35:25 INFO valid result:
hit@10 : 0.0716 hit@50 : 0.1811 ndcg@10 : 0.0333 ndcg@50 : 0.0567
Fri 20 Oct 2023 03:35:25 INFO Discovering multi-modal user interest before 15-th epoch
Fri 20 Oct 2023 03:35:25 INFO Finish multi-modal interest discovery before 15-th epoch
Fri 20 Oct 2023 03:35:53 INFO epoch 15 training [time: 27.96s, train loss: 1298.5864]
Fri 20 Oct 2023 03:35:57 INFO epoch 15 evaluating [time: 3.81s, valid_score: 0.033900]
Fri 20 Oct 2023 03:35:57 INFO valid result:
hit@10 : 0.0734 hit@50 : 0.1833 ndcg@10 : 0.0339 ndcg@50 : 0.0573
Fri 20 Oct 2023 03:35:57 INFO Discovering multi-modal user interest before 16-th epoch
Fri 20 Oct 2023 03:35:57 INFO Finish multi-modal interest discovery before 16-th epoch
Fri 20 Oct 2023 03:36:25 INFO epoch 16 training [time: 27.42s, train loss: 1297.6069]
Fri 20 Oct 2023 03:36:28 INFO epoch 16 evaluating [time: 3.77s, valid_score: 0.033500]
Fri 20 Oct 2023 03:36:28 INFO valid result:
hit@10 : 0.0719 hit@50 : 0.1815 ndcg@10 : 0.0335 ndcg@50 : 0.0568
Fri 20 Oct 2023 03:36:28 INFO Discovering multi-modal user interest before 17-th epoch
Fri 20 Oct 2023 03:36:28 INFO Finish multi-modal interest discovery before 17-th epoch
Fri 20 Oct 2023 03:36:56 INFO epoch 17 training [time: 27.97s, train loss: 1296.5997]
Fri 20 Oct 2023 03:37:00 INFO epoch 17 evaluating [time: 3.84s, valid_score: 0.034500]
Fri 20 Oct 2023 03:37:00 INFO valid result:
hit@10 : 0.0723 hit@50 : 0.1795 ndcg@10 : 0.0345 ndcg@50 : 0.0575
Fri 20 Oct 2023 03:37:00 INFO Discovering multi-modal user interest before 18-th epoch
Fri 20 Oct 2023 03:37:00 INFO Finish multi-modal interest discovery before 18-th epoch
Fri 20 Oct 2023 03:37:26 INFO epoch 18 training [time: 26.19s, train loss: 1295.4767]
Fri 20 Oct 2023 03:37:30 INFO epoch 18 evaluating [time: 3.50s, valid_score: 0.033200]
Fri 20 Oct 2023 03:37:30 INFO valid result:
hit@10 : 0.0721 hit@50 : 0.1853 ndcg@10 : 0.0332 ndcg@50 : 0.0572
Fri 20 Oct 2023 03:37:30 INFO Discovering multi-modal user interest before 19-th epoch
Fri 20 Oct 2023 03:37:30 INFO Finish multi-modal interest discovery before 19-th epoch
Fri 20 Oct 2023 03:37:56 INFO epoch 19 training [time: 25.74s, train loss: 1294.4919]
Fri 20 Oct 2023 03:37:59 INFO epoch 19 evaluating [time: 3.85s, valid_score: 0.035400]
Fri 20 Oct 2023 03:37:59 INFO valid result:
hit@10 : 0.0758 hit@50 : 0.1811 ndcg@10 : 0.0354 ndcg@50 : 0.0578
Fri 20 Oct 2023 03:38:00 INFO Saving current: saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:38:00 INFO Discovering multi-modal user interest before 20-th epoch
Fri 20 Oct 2023 03:38:00 INFO Finish multi-modal interest discovery before 20-th epoch
Fri 20 Oct 2023 03:38:27 INFO epoch 20 training [time: 27.69s, train loss: 1293.9564]
Fri 20 Oct 2023 03:38:31 INFO epoch 20 evaluating [time: 3.90s, valid_score: 0.033900]
Fri 20 Oct 2023 03:38:31 INFO valid result:
hit@10 : 0.0727 hit@50 : 0.1812 ndcg@10 : 0.0339 ndcg@50 : 0.057
Fri 20 Oct 2023 03:38:31 INFO Discovering multi-modal user interest before 21-th epoch
Fri 20 Oct 2023 03:38:31 INFO Finish multi-modal interest discovery before 21-th epoch
Fri 20 Oct 2023 03:38:59 INFO epoch 21 training [time: 28.04s, train loss: 1292.2297]
Fri 20 Oct 2023 03:39:03 INFO epoch 21 evaluating [time: 3.73s, valid_score: 0.034100]
Fri 20 Oct 2023 03:39:03 INFO valid result:
hit@10 : 0.0714 hit@50 : 0.1851 ndcg@10 : 0.0341 ndcg@50 : 0.0583
Fri 20 Oct 2023 03:39:03 INFO Discovering multi-modal user interest before 22-th epoch
Fri 20 Oct 2023 03:39:03 INFO Finish multi-modal interest discovery before 22-th epoch
Fri 20 Oct 2023 03:39:31 INFO epoch 22 training [time: 28.00s, train loss: 1291.7682]
Fri 20 Oct 2023 03:39:35 INFO epoch 22 evaluating [time: 3.82s, valid_score: 0.033700]
Fri 20 Oct 2023 03:39:35 INFO valid result:
hit@10 : 0.0733 hit@50 : 0.1833 ndcg@10 : 0.0337 ndcg@50 : 0.057
Fri 20 Oct 2023 03:39:35 INFO Discovering multi-modal user interest before 23-th epoch
Fri 20 Oct 2023 03:39:35 INFO Finish multi-modal interest discovery before 23-th epoch
Fri 20 Oct 2023 03:40:01 INFO epoch 23 training [time: 26.49s, train loss: 1290.9759]
Fri 20 Oct 2023 03:40:05 INFO epoch 23 evaluating [time: 3.31s, valid_score: 0.034600]
Fri 20 Oct 2023 03:40:05 INFO valid result:
hit@10 : 0.0732 hit@50 : 0.1841 ndcg@10 : 0.0346 ndcg@50 : 0.0583
Fri 20 Oct 2023 03:40:05 INFO Discovering multi-modal user interest before 24-th epoch
Fri 20 Oct 2023 03:40:05 INFO Finish multi-modal interest discovery before 24-th epoch
Fri 20 Oct 2023 03:40:30 INFO epoch 24 training [time: 24.98s, train loss: 1289.7820]
Fri 20 Oct 2023 03:40:33 INFO epoch 24 evaluating [time: 3.86s, valid_score: 0.034900]
Fri 20 Oct 2023 03:40:33 INFO valid result:
hit@10 : 0.0732 hit@50 : 0.1824 ndcg@10 : 0.0349 ndcg@50 : 0.058
Fri 20 Oct 2023 03:40:33 INFO Discovering multi-modal user interest before 25-th epoch
Fri 20 Oct 2023 03:40:33 INFO Finish multi-modal interest discovery before 25-th epoch
Fri 20 Oct 2023 03:41:02 INFO epoch 25 training [time: 28.06s, train loss: 1289.2623]
Fri 20 Oct 2023 03:41:06 INFO epoch 25 evaluating [time: 4.08s, valid_score: 0.033900]
Fri 20 Oct 2023 03:41:06 INFO valid result:
hit@10 : 0.0719 hit@50 : 0.1838 ndcg@10 : 0.0339 ndcg@50 : 0.0578
Fri 20 Oct 2023 03:41:06 INFO Discovering multi-modal user interest before 26-th epoch
Fri 20 Oct 2023 03:41:06 INFO Finish multi-modal interest discovery before 26-th epoch
Fri 20 Oct 2023 03:41:34 INFO epoch 26 training [time: 28.04s, train loss: 1289.0348]
Fri 20 Oct 2023 03:41:37 INFO epoch 26 evaluating [time: 3.83s, valid_score: 0.032900]
Fri 20 Oct 2023 03:41:37 INFO valid result:
hit@10 : 0.071 hit@50 : 0.1828 ndcg@10 : 0.0329 ndcg@50 : 0.0567
Fri 20 Oct 2023 03:41:37 INFO Discovering multi-modal user interest before 27-th epoch
Fri 20 Oct 2023 03:41:37 INFO Finish multi-modal interest discovery before 27-th epoch
Fri 20 Oct 2023 03:42:05 INFO epoch 27 training [time: 27.99s, train loss: 1287.7889]
Fri 20 Oct 2023 03:42:09 INFO epoch 27 evaluating [time: 3.83s, valid_score: 0.034400]
Fri 20 Oct 2023 03:42:09 INFO valid result:
hit@10 : 0.0724 hit@50 : 0.1812 ndcg@10 : 0.0344 ndcg@50 : 0.0576
Fri 20 Oct 2023 03:42:09 INFO Discovering multi-modal user interest before 28-th epoch
Fri 20 Oct 2023 03:42:09 INFO Finish multi-modal interest discovery before 28-th epoch
Fri 20 Oct 2023 03:42:36 INFO epoch 28 training [time: 26.30s, train loss: 1287.2256]
Fri 20 Oct 2023 03:42:39 INFO epoch 28 evaluating [time: 3.21s, valid_score: 0.035000]
Fri 20 Oct 2023 03:42:39 INFO valid result:
hit@10 : 0.0744 hit@50 : 0.1829 ndcg@10 : 0.035 ndcg@50 : 0.058
Fri 20 Oct 2023 03:42:39 INFO Discovering multi-modal user interest before 29-th epoch
Fri 20 Oct 2023 03:42:39 INFO Finish multi-modal interest discovery before 29-th epoch
Fri 20 Oct 2023 03:43:03 INFO epoch 29 training [time: 24.68s, train loss: 1286.7427]
Fri 20 Oct 2023 03:43:07 INFO epoch 29 evaluating [time: 3.85s, valid_score: 0.034200]
Fri 20 Oct 2023 03:43:07 INFO valid result:
hit@10 : 0.0718 hit@50 : 0.1834 ndcg@10 : 0.0342 ndcg@50 : 0.0579
Fri 20 Oct 2023 03:43:07 INFO Discovering multi-modal user interest before 30-th epoch
Fri 20 Oct 2023 03:43:07 INFO Finish multi-modal interest discovery before 30-th epoch
Fri 20 Oct 2023 03:43:35 INFO epoch 30 training [time: 28.03s, train loss: 1286.2999]
Fri 20 Oct 2023 03:43:39 INFO epoch 30 evaluating [time: 3.83s, valid_score: 0.034300]
Fri 20 Oct 2023 03:43:39 INFO valid result:
hit@10 : 0.0732 hit@50 : 0.1854 ndcg@10 : 0.0343 ndcg@50 : 0.0581
Fri 20 Oct 2023 03:43:39 INFO Finished training, best eval result in epoch 19
Fri 20 Oct 2023 03:43:39 INFO Loading model structure and parameters from saved/MISSRec-Oct-20-2023_03-27-40.pth
Fri 20 Oct 2023 03:43:43 INFO best valid : OrderedDict([('hit@10', 0.0758), ('hit@50', 0.1811), ('ndcg@10', 0.0354), ('ndcg@50', 0.0578)])
Fri 20 Oct 2023 03:43:43 INFO test result: OrderedDict([('hit@10', 0.0715), ('hit@50', 0.1801), ('ndcg@10', 0.0337), ('ndcg@50', 0.0569)])
Fri 20 Oct 2023 03:43:43 INFO Write log to /data/wangjinpeng/MISSRec_clear/log/MISSRec_gpu4/Oct-20-2023_03-27-32_.log