-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLKF_CR3BP_old.py
405 lines (354 loc) · 12.4 KB
/
LKF_CR3BP_old.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
import numpy as np
from scipy.integrate import solve_ivp
import matplotlib.pyplot as plt
class CR3BP:
def __init__(self, mu=0.012150583925359):
self.mu = mu
def dynamics(self, t, y):
x, y, z, vx, vy, vz = y
r1 = np.sqrt((x + self.mu) ** 2 + y**2 + z**2)
r2 = np.sqrt((x - (1 - self.mu)) ** 2 + y**2 + z**2)
ax = (
2 * vy
+ x
- (1 - self.mu) * (x + self.mu) / r1**3
- self.mu * (x - (1 - self.mu)) / r2**3
)
ay = -2 * vx + y - (1 - self.mu) * y / r1**3 - self.mu * y / r2**3
az = -(1 - self.mu) * z / r1**3 - self.mu * z / r2**3
return [vx, vy, vz, ax, ay, az]
def dynamics_stm(self, t, y):
stm = np.reshape(y[6:], (6, 6))
x, y, z, vx, vy, vz = y[:6]
r1 = np.sqrt((x + self.mu) ** 2 + y**2 + z**2)
r2 = np.sqrt((x - (1 - self.mu)) ** 2 + y**2 + z**2)
ax = (
2 * vy
+ x
- (1 - self.mu) * (x + self.mu) / r1**3
- self.mu * (x - (1 - self.mu)) / r2**3
)
ay = -2 * vx + y - (1 - self.mu) * y / r1**3 - self.mu * y / r2**3
az = -(1 - self.mu) * z / r1**3 - self.mu * z / r2**3
A = self.jacobian(t, np.array([x, y, z, vx, vy, vz]))
d_stm = np.dot(A, stm)
return [vx, vy, vz, ax, ay, az] + d_stm.flatten().tolist()
def jacobian(self, t, y):
x, y, z, vx, vy, vz = y
r1 = np.sqrt((x + self.mu) ** 2 + y**2 + z**2)
r2 = np.sqrt((x - (1 - self.mu)) ** 2 + y**2 + z**2)
# Variational equations
df1dx = (
1
- (1 - self.mu) / r1**3
+ 3 * (1 - self.mu) * (x + self.mu) ** 2 / r1**5
- self.mu / r2**3
+ 3 * self.mu * (x + self.mu - 1) ** 2 / r2**5
)
df1dy = (
3 * (1 - self.mu) * (x + self.mu) * y / r1**5
+ 3 * self.mu * (x + self.mu - 1) * y / r2**5
)
df1dz = (
3 * (1 - self.mu) * (x + self.mu) * z / r1**5
+ 3 * self.mu * (x + self.mu - 1) * z / r2**5
)
df2dy = (
1
- (1 - self.mu) / r1**3
+ 3 * (1 - self.mu) * y**2 / r1**5
- self.mu / r2**3
+ 3 * self.mu * y**2 / r2**5
)
df2dz = 3 * (1 - self.mu) * y * z / r1**5 + 3 * self.mu * y * z / r2**5
df3dz = (
-(1 - self.mu) / r1**3
+ 3 * (1 - self.mu) * z**2 / r1**5
- self.mu / r2**3
+ 3 * self.mu * z**2 / r2**5
)
# Jacobian
A = np.array(
[
[0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1],
[df1dx, df1dy, df1dz, 0, 2, 0],
[df1dy, df2dy, df2dz, -2, 0, 0],
[df1dz, df2dz, df3dz, 0, 0, 0],
]
)
return A
class BR4BP_SRP: # TODO: is it correct?
def __init__(
self,
mu=0.012150583925359,
m_star=6.0458 * 1e24,
l_star=3.844 * 1e8,
t_star=375200,
):
self.mu = mu
self.m_star = m_star
self.l_star = l_star
self.t_star = t_star
def dynamics(self, t, y):
x, y, z, vx, vy, vz = y
# CRTBP absolute dynamics
r1 = np.sqrt((x + self.mu) ** 2 + y**2 + z**2)
r2 = np.sqrt((x + self.mu - 1) ** 2 + y**2 + z**2)
# BRFBP additional values and components
ms = 3.28900541 * 1e5
ws = -9.25195985 * 1e-1
rho = 3.88811143 * 1e2
rho_vec = rho * np.array([np.cos(ws * t), np.sin(ws * t), 0])
r3 = np.sqrt(
(x - rho * np.cos(ws * t)) ** 2 + (y - rho * np.sin(ws * t)) ** 2 + z**2
)
dxdt4 = -ms * (x - rho * np.cos(ws * t)) / r3**3 - ms * np.cos(ws * t) / rho**2
dxdt5 = -ms * (y - rho * np.sin(ws * t)) / r3**3 - ms * np.sin(ws * t) / rho**2
dxdt6 = -ms * z / r3**3
# SRP additional values and components
P = (
4.56 * 1e-6 / (self.m_star * self.l_star / self.t_star**2) * self.l_star**2
) # OSS: N x m^-2
Cr = 1
A = 1 / self.l_star**2
m = 1000 / self.m_star
dist_coeff = 1
a_srp = -(Cr * A * P * dist_coeff / m) * rho_vec
ax = (
2 * vy
+ x
- (1 - self.mu) * (x + self.mu) / r1**3
- self.mu * (x - (1 - self.mu)) / r2**3
+ dxdt4
+ a_srp[0]
)
ay = (
-2 * vx
+ y
- (1 - self.mu) * y / r1**3
- self.mu * y / r2**3
+ dxdt5
+ a_srp[1]
)
az = -self.mu * z / r1**3 - (1 - self.mu) * z / r2**3 + dxdt6 + a_srp[2]
return [vx, vy, vz, ax, ay, az]
class MeasurementModel:
def __init__(self, origin):
self.origin = origin
def get_measurements(self, position, velocity, sigma_range, sigma_range_rate):
rel_position = position - self.origin[:3]
range_ = np.linalg.norm(rel_position) + np.random.normal(0, sigma_range)
range_rate = np.dot(rel_position, velocity) / range_ + np.random.normal(
0, sigma_range_rate
)
return np.array([range_, range_rate])
def jacobian(self, position, velocity):
rel_position = position - self.origin[:3]
rel_velocity = velocity - self.origin[3:]
range_ = np.linalg.norm(rel_position)
range_rate = np.dot(rel_position, velocity) / range_
range_grad = np.vstack((rel_position / range_, np.zeros(3)))
range_rate_grad = np.vstack(
(
(rel_velocity - rel_position * range_rate / range_) / range_,
rel_position / range_,
)
)
# Return a (6, 2) matrix
J = np.hstack((range_grad, range_rate_grad))
return J
class LinearizedKalmanFilter:
def __init__(self, Q, R, dx0, P0):
self.Q = Q # Process noise covariance
self.R = R # Measurement noise covariance
self.dx = dx0 # Initial state deviation estimate
self.P = P0 # Initial covariance estimate
def predict(self, F):
# Predict state using the dynamical model
self.dx = np.dot(F, self.dx)
# Predict covariance
self.P = np.dot(np.dot(F, self.P), F.T) + self.Q
def update(self, H, dz):
# Calculate Kalman gain
S = np.dot(np.dot(H, self.P), H.T) + self.R
K = np.dot(np.dot(self.P, H.T), np.linalg.inv(S))
# Update state estimate
dy = dz - np.dot(H, self.dx)
self.dx = self.dx + np.dot(K, dy)
# Update covariance estimate
self.P = self.P - np.dot(np.dot(K, H), self.P)
self.P = 0.5 * (self.P + self.P.T) # OSS: Ensure symmetry
# Define CR3BP dynamics (Earth-Moon system as default)
cr3bp = CR3BP()
bcr4bp_srp = (
BR4BP_SRP()
) # TODO: remove update and verify propagation is fine, then check update
# Measurement model setup
gs_state = np.array([0, 0, 0, 0, 0, 0])
measurement_model = MeasurementModel(gs_state)
# Initial conditions (x, y, z, vx, vy, vz)
initial_state_true = np.array([1, 0.3, 0.1, 0.5, 0.5, 0.3])
sigma_state = np.concatenate(
(1e-3 * initial_state_true[:3], 1e-6 * initial_state_true[3:])
)
initial_state_ref = initial_state_true + np.random.normal(0, sigma_state)
# Time span
t_span = (0, 0.5)
num_points = 10000
dt = (t_span[1] - t_span[0]) / (num_points - 1)
t_eval = np.linspace(*t_span, num_points)
# Integrate dynamics
solution_true = solve_ivp(
bcr4bp_srp.dynamics,
t_span,
initial_state_true,
method="LSODA",
rtol=2.5 * 1e-14,
atol=2.5 * 1e-14,
t_eval=t_eval,
)
solution_ref = solve_ivp(
cr3bp.dynamics,
t_span,
initial_state_ref,
method="LSODA",
rtol=2.5 * 1e-14,
atol=2.5 * 1e-14,
t_eval=t_eval,
)
solution_ref_stm = solve_ivp(
cr3bp.dynamics_stm,
t_span,
np.concatenate((initial_state_ref, np.reshape(np.eye(6), (36,)))),
method="LSODA",
rtol=2.5 * 1e-14,
atol=2.5 * 1e-14,
t_eval=t_eval,
)
# Simulated measurements (OSS: CR3BP units of measure, not-dimensional)
sigma_range = 1e-4 # TODO: in general poke around with this values
sigma_range_rate = 1e-6
positions_true = solution_true.y[:3, :]
velocities_true = solution_true.y[3:, :]
measurements_true = np.array(
[
measurement_model.get_measurements(
positions_true[:, i], velocities_true[:, i], sigma_range, sigma_range_rate
)
for i in range(len(t_eval) - 1)
]
)
positions_ref = solution_ref.y[:3, :]
velocities_ref = solution_ref.y[3:, :]
measurements_ref = np.array(
[
measurement_model.get_measurements(
positions_ref[:, i], velocities_ref[:, i], sigma_range, sigma_range_rate
)
for i in range(len(t_eval) - 1)
]
)
# Measurement model partials
H = np.array(
[
measurement_model.jacobian(positions_ref[:, i], velocities_ref[:, i])
for i in range(len(t_eval) - 1)
]
)
# Dynamical model STM
F = np.array(
[
(
np.reshape(solution_ref_stm.y[6:42, i], (6, 6))
* np.linalg.inv(np.reshape(solution_ref_stm.y[6:42, i], (6, 6)))
)
for i in range(len(t_eval) - 1)
]
)
# NOTE: o.w., F = (np.eye(6) + cr3bp.jacobian(None, solution_ref.y[:, i]) * dt)
# Kalman filter setup
Q_cont = np.diag([1e-2, 1e-2, 1e-2]) # Process noise covariance
Q = np.vstack(
(
np.hstack((dt**3 / 3 * Q_cont, dt**2 / 2 * Q_cont)),
np.hstack((dt**2 / 2 * Q_cont, dt * Q_cont)),
)
)
R = np.diag([sigma_range**2, sigma_range_rate**2]) # Measurement noise covariance
dx0 = initial_state_true - initial_state_ref # Initial state deviation estimate
P0 = np.diag(sigma_state) # Initial covariance estimate
lkf = LinearizedKalmanFilter(Q, R, dx0, P0)
# Run Kalman filter
filtered_deviation = np.zeros((6, len(t_eval) - 1))
covariance = np.zeros((6, 6, len(t_eval) - 1))
for i in range(len(t_eval) - 1):
lkf.predict(F[i])
measurement_deviation = measurements_true[i] - measurements_ref[i]
lkf.update(H[i], measurement_deviation)
filtered_deviation[:, i] = lkf.dx
covariance[:, :, i] = lkf.P
# Plot results trajectory
plt.figure()
ax = plt.axes(projection="3d")
# Plot CR3BP trajectory
ax.plot3D(
solution_true.y[0], solution_true.y[1], solution_true.y[2], label="True Trajectory"
)
ax.plot3D(
solution_ref.y[0],
solution_ref.y[1],
solution_ref.y[2],
label="Reference Trajectory",
)
# Plot Kalman filter estimates
ax.plot3D(
solution_ref.y[0, :-1] + filtered_deviation[0],
solution_ref.y[1, :-1] + filtered_deviation[1],
solution_ref.y[2, :-1] + filtered_deviation[2],
label="Filtered Trajectory",
color="green",
)
plt.xlabel("x [-]")
plt.ylabel("y [-]")
plt.title("Circular Restricted Three-Body Problem with Kalman Filter")
plt.legend()
plt.grid(True)
plt.show()
# Calculate error between true trajectory and estimated trajectory
error = filtered_deviation
# Calculate 3-sigma bound for error
sigma_bound = np.zeros((6, len(t_eval) - 1))
for i in range(len(t_eval) - 1):
sigma_bound[:, i] = 3 * np.sqrt(np.diagonal(covariance[:, :, i]))
# Plot results in a subplot 2x3 grid
fig, axs = plt.subplots(2, 3, sharex=True)
# Loop through each component
for i in range(6):
# Determine the row index based on the component index
row_index = 0 if i < 3 else 1
# Determine the column index based on the component index
col_index = i % 3
# Plot error for the component
axs[row_index, col_index].plot(
solution_ref.t[:-1], error[i], linestyle="--", color="orange", label="Error"
)
axs[row_index, col_index].fill_between(
solution_ref.t[:-1],
-sigma_bound[i],
sigma_bound[i],
alpha=0.2,
label="3-sigma bound",
)
axs[row_index, col_index].set_ylabel(
f"Error in {['X', 'Y', 'Z', 'VX', 'VY', 'VZ'][i]} direction"
)
axs[row_index, col_index].legend()
axs[row_index, col_index].grid(True)
# Add common x-axis label and title
plt.xlabel("Time")
plt.suptitle("Error and 3-sigma Bound of Kalman Filter")
# Adjust layout
plt.tight_layout()
plt.show()