-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathbaselineCNNClassifiers.py
255 lines (210 loc) · 10.7 KB
/
baselineCNNClassifiers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import sys
# Add all the python paths needed to execute when using Python 3.6
sys.path.append(os.path.join(os.path.dirname(__file__), "models"))
sys.path.append(os.path.join(os.path.dirname(__file__), "models/arc"))
sys.path.append(os.path.join(os.path.dirname(__file__), "skiprnn_pytorch"))
sys.path.append(os.path.join(os.path.dirname(__file__), "models/wrn"))
import time
import numpy as np
from datetime import datetime, timedelta
from logger import Logger
import torch
import torch.nn as nn
from sklearn.metrics import accuracy_score
import shutil
from models import models
from models.models import ArcBinaryClassifier
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
from option import Options, tranform_options
# Omniglot dataset
from omniglotDataLoader import omniglotDataLoader
from dataset.omniglot import Omniglot
# Mini-imagenet dataset
from miniimagenetDataLoader import miniImagenetDataLoader
from dataset.mini_imagenet import MiniImagenet
# Banknote dataset
from banknoteDataLoader import banknoteDataLoader
from dataset.banknote_pytorch import FullBanknote
# FCN
from models.conv_cnn import ConvCNNFactory
from do_epoch_fns import do_epoch_classification
import arc_train
import arc_val
import arc_test
import multiprocessing
import cv2
from torch.optim.lr_scheduler import ReduceLROnPlateau
# CUDA_VISIBLE_DEVICES == 1 (710) / CUDA_VISIBLE_DEVICES == 0 (1070)
#import os
#os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
#os.environ["CUDA_VISIBLE_DEVICES"]="0"
def train(index = None):
# change parameters
opt = Options().parse()
#opt = Options().parse() if opt is None else opt
opt = tranform_options(index, opt)
# use cuda?
opt.cuda = torch.cuda.is_available()
cudnn.benchmark = True # set True to speedup
# Load mean/std if exists
train_mean = None
train_std = None
if os.path.exists(os.path.join(opt.save, 'mean.npy')):
train_mean = np.load(os.path.join(opt.save, 'mean.npy'))
train_std = np.load(os.path.join(opt.save, 'std.npy'))
# Load FCN
# Convert the opt params to dict.
optDict = dict([(key, value) for key, value in opt._get_kwargs()])
fcn = ConvCNNFactory.createCNN(opt.wrn_name_type, optDict)
if opt.wrn_load and os.path.exists(opt.wrn_load):
if torch.cuda.is_available():
fcn.load_state_dict(torch.load(opt.wrn_load))
else:
fcn.load_state_dict(torch.load(opt.wrn_load, map_location=torch.device('cpu')))
if opt.cuda:
fcn.cuda()
# Load Dataset
opt.setType='set1'
if opt.datasetName == 'miniImagenet':
dataLoader = miniImagenetDataLoader(type=MiniImagenet, opt=opt, fcn=fcn)
elif opt.datasetName == 'omniglot':
dataLoader = omniglotDataLoader(type=Omniglot, opt=opt, fcn=fcn,train_mean=train_mean,
train_std=train_std)
elif opt.datasetName == 'banknote':
dataLoader = banknoteDataLoader(type=FullBanknote, opt=opt, fcn=fcn, train_mean=train_mean,
train_std=train_std)
else:
pass
# Use the same seed to split the train - val - test
if os.path.exists(os.path.join(opt.save, 'dataloader_rnd_seed_arc.npy')):
rnd_seed = np.load(os.path.join(opt.save, 'dataloader_rnd_seed_arc.npy'))
else:
rnd_seed = np.random.randint(0, 100000)
np.save(os.path.join(opt.save, 'dataloader_rnd_seed_arc.npy'), rnd_seed)
# Get the DataLoaders from train - val - test
train_loader, val_loader, test_loader = dataLoader.get(rnd_seed=rnd_seed)
train_mean = dataLoader.train_mean
train_std = dataLoader.train_std
if not os.path.exists(os.path.join(opt.save, 'mean.npy')):
np.save(os.path.join(opt.save, 'mean.npy'), train_mean)
np.save(os.path.join(opt.save, 'std.npy'), train_std)
# Delete memory
del dataLoader
# Load Set2.
opt.setType='set2'
if opt.datasetName == 'miniImagenet':
dataLoader2 = miniImagenetDataLoader(type=MiniImagenet, opt=opt, fcn=fcn)
elif opt.datasetName == 'omniglot':
dataLoader2 = omniglotDataLoader(type=Omniglot, opt=opt, fcn=fcn,train_mean=train_mean,
train_std=train_std)
elif opt.datasetName == 'banknote':
dataLoader2 = banknoteDataLoader(type=FullBanknote, opt=opt, fcn=fcn, train_mean=train_mean,
train_std=train_std)
else:
pass
# Get the DataLoaders from train - val - test
#train_loader2, val_loader2, test_loader2 = dataLoader2.get(rnd_seed=rnd_seed)
train_loader2, val_loader2, test_loader2 = dataLoader2.get(rnd_seed=rnd_seed, dataPartition = [None,None,'train+val+test'])
del dataLoader2
if opt.cuda:
models.use_cuda = True
if opt.name is None:
# if no name is given, we generate a name from the parameters.
# only those parameters are taken, which if changed break torch.load compatibility.
#opt.name = "train_{}_{}_{}_{}_{}_wrn".format(str_model_fn, opt.numGlimpses, opt.glimpseSize, opt.numStates,
opt.name = "{}_{}_{}_{}_{}_{}_wrn".format(opt.naive_full_type,
"fcn" if opt.apply_wrn else "no_fcn",
opt.arc_numGlimpses,
opt.arc_glimpseSize, opt.arc_numStates,
"cuda" if opt.cuda else "cpu")
print("[{}]. Will start training {} with parameters:\n{}\n\n".format(multiprocessing.current_process().name,
opt.name, opt))
# make directory for storing models.
models_path = os.path.join(opt.save, opt.name)
if not os.path.isdir(models_path):
os.makedirs(models_path)
else:
shutil.rmtree(models_path)
# create logger
logger = Logger(models_path)
loss_fn = torch.nn.CrossEntropyLoss()
if opt.cuda:
loss_fn = loss_fn.cuda()
optimizer = torch.optim.Adam(params=fcn.parameters(), lr=opt.arc_lr)
scheduler = ReduceLROnPlateau(optimizer, mode='min', patience=opt.arc_lr_patience, verbose=True)
# load preexisting optimizer values if exists
if os.path.exists(opt.arc_optimizer_path):
if torch.cuda.is_available():
optimizer.load_state_dict(torch.load(opt.arc_optimizer_path))
else:
optimizer.load_state_dict(torch.load(opt.arc_optimizer_path, map_location=torch.device('cpu')))
# Select the epoch functions
do_epoch_fn = do_epoch_classification
discriminator = None
coAttn = None
###################################
## TRAINING ARC/CONVARC
###################################
epoch = 0
if opt.arc_resume == True or opt.arc_load is None:
try:
while epoch < opt.train_num_batches:
epoch += 1
train_auc_epoch, train_auc_std_epoch, train_loss_epoch = arc_train.arc_train(epoch, do_epoch_fn, opt, train_loader,
discriminator, logger, optimizer=optimizer,
loss_fn=loss_fn, fcn=fcn, coAttn=coAttn)
# Reduce learning rate when a metric has stopped improving
scheduler.step(train_loss_epoch)
if epoch % opt.val_freq == 0:
val_auc_epoch, val_auc_std_epoch, val_loss_epoch, is_model_saved = arc_val.arc_val(epoch, do_epoch_fn, opt, val_loader,
discriminator, logger,
optimizer=optimizer,
loss_fn=loss_fn, fcn=fcn, coAttn=coAttn)
if is_model_saved:
print('++++++++++++TESTING FOR SET1++++++++++++++')
test_auc_epoch, test_auc_std_epoch = arc_test.arc_test(epoch, do_epoch_fn, opt, test_loader, discriminator, logger)
print('++++++++++++FINISHED TESTING FOR SET1. AUC: %f, AUC_STD: %f ++++++++++++++' % (test_auc_epoch,test_auc_std_epoch))
print ('[%s] ... Testing Set2' % multiprocessing.current_process().name)
test_auc_epoch, test_auc_std_epoch = arc_test.arc_test(epoch, do_epoch_fn, opt, test_loader2, discriminator, logger)
print('++++++++++++FINISHED TESTING FOR SET2. AUC: %f, AUC_STD: %f ++++++++++++++' % (test_auc_epoch,test_auc_std_epoch))
logger.step()
print ("[%s] ... training done" % multiprocessing.current_process().name)
print ("[%s], best validation auc: %.2f, best validation loss: %.5f" % (
multiprocessing.current_process().name, arc_val.best_auc, arc_val.best_validation_loss))
print ("[%s] ... exiting training regime " % multiprocessing.current_process().name)
except KeyboardInterrupt:
pass
###################################
#''' UNCOMMENT!!!! TESTING NAIVE - FULLCONTEXT
# LOAD AGAIN THE FCN AND ARC models. Freezing the weights.
print ('[%s] ... Testing Set1' % multiprocessing.current_process().name)
test_loader.dataset.mode = 'generator_processor'
test_acc_epoch = arc_test.arc_test(epoch, do_epoch_fn, opt, test_loader, discriminator, logger)
print ('[%s] ... FINISHED! ...' % multiprocessing.current_process().name)
#'''
# set the mode of the dataset to generator_processor
# which generates and processes the images without saving them.
opt.mode = 'generator_processor'
## Get the set2 and try
print ('[%s] ... Loading Set2' % multiprocessing.current_process().name)
opt.setType='set2'
if opt.datasetName == 'miniImagenet':
dataLoader = miniImagenetDataLoader(type=MiniImagenet, opt=opt, fcn=None)
elif opt.datasetName == 'omniglot':
dataLoader = omniglotDataLoader(type=Omniglot, opt=opt, fcn=None,train_mean=None,
train_std=None)
elif opt.datasetName == 'banknote':
dataLoader = banknoteDataLoader(type=FullBanknote, opt=opt, fcn=None, train_mean=None,
train_std=None)
else:
pass
train_loader, val_loader, test_loader = dataLoader.get(rnd_seed=rnd_seed, dataPartition = [None,None,'train+val+test'])
print ('[%s] ... Testing Set2' % multiprocessing.current_process().name)
test_acc_epoch = arc_test.arc_test(epoch, do_epoch_fn, opt, test_loader, discriminator, logger)
print ('[%s] ... FINISHED! ...' % multiprocessing.current_process().name)
def main():
train()
if __name__ == "__main__":
main()