-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathdo_epoch_fns.py
349 lines (289 loc) · 13.9 KB
/
do_epoch_fns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import numpy as np
import torch
from sklearn.metrics import accuracy_score, confusion_matrix
from torch.autograd import Variable
import cv2
from tqdm import tqdm
from sklearn.metrics import ranking
import pdb
def compute_budget_loss(loss, updated_states, cost_per_sample = 0.001):
"""
Compute penalization term on the number of updated states (i.e. used samples)
"""
if cost_per_sample > 0. and updated_states is not None:
return torch.mean(torch.sum(cost_per_sample * updated_states,1),0)
else:
if loss.is_cuda:
return Variable(torch.zeros(loss.shape).cuda(),requires_grad=True)
else:
return Variable(torch.zeros(loss.shape), requires_grad=True)
def compute_time_restricted_budget_loss(loss, updated_states, num_glimpses = 1):
"""
Compute penalization term on the number of updated states (i.e. used samples)
"""
#x = Variable(torch.from_numpy(np.arange(updated_states.shape[0])).float(), requires_grad=True)
x = Variable(torch.from_numpy(np.arange(0 - (num_glimpses-1),updated_states.shape[0]-(num_glimpses-1))).float(), requires_grad=True)
if loss.is_cuda:
x = x.cuda()
softplus = nn.Softplus()(x)
#elu = nn.ELU(1.0)(x - 3 - num_glimpses)
#elu = nn.ELU(1.0)(x + 1 - num_glimpses)
updated_states = torch.mean(updated_states.view(updated_states.shape[0], -1), 1)
#glimpse_loss = torch.nn.ReLU()(updated_states * elu)
#glimpse_loss = updated_states * elu
glimpse_loss = updated_states * softplus
return torch.sum(glimpse_loss) * 0.005
def binary_accuracy(pred, target):
hard_pred = (pred > 0.5).int()
correct = (hard_pred == target).sum().item()
accuracy = float(correct) / target.size()[0]
accuracy = int(accuracy * 100)
return accuracy
def do_epoch_ARC(opt, loss_fn, discriminator, data_loader,
optimizer=None, fcn=None, coAttn=None):
#acc_epoch = []
auc_epoch = []
loss_epoch = []
feats_epoch = []
labels_epoch = []
activations_layers = []
# Set for the first batch a random seed for AumentationAleju
#data_loader.dataset.agumentation_seed = int(np.random.rand() * 1000)
data_loader.dataset.generate_pairs(opt.batchSize)
for batch_idx, (data, label) in enumerate(data_loader):
# If the input has been already forwarded in the DataLoader do not it again
if not opt.fcn_applyOnDataLoader:
if opt.cuda:
data = data.cuda()
label = label.cuda()
if optimizer:
inputs = Variable(data, requires_grad=True)
else:
inputs = Variable(data, requires_grad=False)
targets = Variable(label)
'''
for index in range(inputs.shape[0]):
cv2.imwrite('D:/PhD/images/batch_' + str(batch_idx) +'_index_' + str(index) + '_img1_target_' + str(
int(targets[index].data.cpu().numpy())) + '.png',
inputs[index, 0, :, :, :].transpose(0, 1).transpose(1, 2).data.cpu().numpy() * 255)
cv2.imwrite('D:/PhD/images/batch_' + str(batch_idx) +'_index_' + str(index) + '_img2_target_' + str(
int(targets[index].data.cpu().numpy())) + '.png',
inputs[index, 1, :, :, :].transpose(0, 1).transpose(1, 2).data.cpu().numpy() * 255)
'''
# The dropout is done in the input if not CARC. If CARC the dropout is done in the
# residual blocks in the Wide Residual Network.
if optimizer and not fcn:
inputs = torch.nn.Dropout(p=opt.dropout)(inputs)
batch_size, npair, nchannels, x_size, y_size = inputs.shape
inputs = inputs.view(batch_size * npair, nchannels, x_size, y_size)
if fcn:
inputs = fcn(inputs)
_ , nfilters, featx_size, featy_size = inputs.shape
inputs = inputs.view(batch_size, npair, nfilters, featx_size, featy_size)
else:
inputs = data
if opt.cuda:
inputs = inputs.cuda()
label = label.cuda()
targets = Variable(label)
#free memory
del data
del label
# COAttention Module
if opt.use_coAttn:
inputs = coAttn(inputs)
features, updated_states = discriminator(inputs)
# free memory
del inputs
del updated_states
if loss_fn:
loss = loss_fn(features.squeeze(), targets.float())
# Add the budget computation cost
#budget_loss = compute_time_restricted_budget_loss(loss, updated_states, num_glimpses=1)
#alpha = 0.5
#loss_total = alpha * loss + (1-alpha) * budget_loss
loss_total = loss
loss_epoch.append(loss_total.item())
# Training...
if optimizer and loss_fn:
optimizer.zero_grad()
loss_total.backward()
optimizer.step()
#acc_epoch.append(binary_accuracy(features.squeeze(),targets.int()))
#auc = ranking.roc_auc_score(targets.long().data.cpu().numpy(), features.squeeze().cpu().data.numpy(), average=None, sample_weight=None)
#auc_epoch.append(auc)
feats_epoch.append(features.squeeze().cpu().data.numpy())
labels_epoch.append(targets.long().data.cpu().numpy())
# free memory
del features
del targets
# set a random seed for the next batch
#data_loader.dataset.agumentation_seed = int(np.random.rand()*1000)
#activations_layers.append(torch.mean(updated_states.view(updated_states.shape[0],-1),1).data.cpu().numpy())
#print('Activations: %s' % str(list(np.mean(np.vstack(activations_layers),0))))
#return auc_epoch, loss_epoch
return (feats_epoch,labels_epoch), loss_epoch
def do_epoch_ARC_unroll(opt, loss_fn, discriminator, data_loader,
optimizer=None, fcn=None):
acc_epoch = []
loss_epoch = []
data_loader.dataset.agumentation_seed = int(np.random.rand() * 1000)
activations_layers = []
lst_losses_epoch = []
lst_acc_epoch = []
for batch_idx, (data, label) in enumerate(data_loader):
if opt.cuda:
data = data.cuda()
label = label.cuda()
if optimizer:
inputs = Variable(data, requires_grad=True)
else:
inputs = Variable(data, requires_grad=False)
targets = Variable(label)
# The dropout is done in the input if not CARC. If CARC the dropout is done in the
# residual blocks in the Wide Residual Network.
if optimizer and not fcn:
inputs = torch.nn.Dropout(p=opt.dropout)(inputs)
batch_size, npair, nchannels, x_size, y_size = inputs.shape
inputs = inputs.view(batch_size * npair, nchannels, x_size, y_size)
if fcn:
inputs = fcn(inputs)
_ , nfilters, featx_size, featy_size = inputs.shape
inputs = inputs.view(batch_size, npair, nfilters, featx_size, featy_size)
features, decision, loss, lst_losses_turn, lst_acc_turn = discriminator(inputs,targets)
# Training...
if optimizer:
optimizer.zero_grad()
loss.backward()
optimizer.step()
acc_epoch.append(binary_accuracy(decision.squeeze(),targets.int()))
lst_losses_epoch.append(lst_losses_turn)
lst_acc_epoch.append(lst_acc_turn)
loss_epoch.append(loss.data[0])
print('___'.join([str(i) + '_' + str(data) for i, data in enumerate(np.mean(np.hstack(lst_losses_epoch), 1))]))
print('___'.join([str(i) + '_' + str(data) for i, data in enumerate(np.mean(np.vstack(lst_acc_epoch),0))]))
return acc_epoch, loss_epoch
def do_epoch_naive_full(opt, discriminator, data_loader, model_fn,
loss_fn=None, optimizer=None, fcn=None, coAttn=None):
acc_epoch = []
loss_epoch = []
#data_loader.dataset.agumentation_seed = int(np.random.rand() * 1000)
for batch_idx, (data, label) in enumerate(data_loader):
# If the input has been already forwarded in the DataLoader do not it again
if not opt.fcn_applyOnDataLoader:
if opt.cuda:
data = data.cuda()
label = label.cuda()
'''
for index_batch in range(data.shape[0]):
for index_oneshot in range(data.shape[1]):
cv2.imwrite('D:/PhD/images/batch_' + str(index_batch) +'_index_' + str(index_oneshot) + '_img_target_' + str(
int(label[index_batch][index_oneshot].data.cpu().numpy())) + '.png', data[index_batch, index_oneshot].data.cpu().numpy().transpose(1,2,0) * 255)
'''
# not needed gradient graph for the FCN and ARC
inputs = Variable(data, requires_grad = False)
#inputs = Variable(data, requires_grad=True)
targets = Variable(label)
targets_binary = torch.stack([targets[i,:-data_loader.dataset.n_shot] == targets[i,-data_loader.dataset.n_shot] for i in range(len(targets))])
batch_size, npair, nchannels, x_size, y_size = inputs.shape
inputs = inputs.view(batch_size * npair, nchannels, x_size, y_size)
if fcn:
inputs = fcn(inputs)
_ , nfilters, featx_size, featy_size = inputs.shape
inputs = inputs.view(batch_size, npair, nfilters, featx_size, featy_size)
else:
inputs = data
if opt.cuda:
label = label.cuda()
targets = Variable(label)
targets_binary = torch.stack([targets[i,:-data_loader.dataset.n_shot] == targets[i,-data_loader.dataset.n_shot] for i in range(len(targets))])
support_train = inputs[:,:data_loader.dataset.n_shot*data_loader.dataset.n_way,:]
# repmat support test if all the discriminator could be processed in a single batch
#support_test = inputs[:, npair-1:, :].expand(batch_size, npair-1, nfilters, featx_size, featy_size)
support_test = inputs[:,data_loader.dataset.n_shot*data_loader.dataset.n_way:, :]
hidden_features = []
for i in range(support_train.shape[1]):
#inputs = torch.cat((support_train[:, i, :].unsqueeze(1),support_test[:, i, :].unsqueeze(1)), dim=1)
inputs = torch.cat((support_train[:, i, :].unsqueeze(1), support_test), dim=1)
if opt.use_coAttn:
inputs = coAttn(inputs)
features = discriminator(inputs, return_arc_out = True)[0]
hidden_features.append(features.unsqueeze(1))
# Add the gradient graph control
hidden_features = torch.cat(hidden_features,dim=1)
features = Variable(hidden_features.data, requires_grad=True)
#features = torch.cat(hidden_features, dim=1)
features = model_fn(features)
if loss_fn:
loss = loss_fn(features, targets_binary.float())
loss_epoch.append(loss.item())
# Training...
if optimizer:
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Find the top n-shots values.
values, index = torch.topk(features, k = data_loader.dataset.n_shot, dim=1, largest=True, sorted=True)
features_binary = torch.zeros(targets_binary.size())
# Set the indices to 1
for i in range(len(index)):
features_binary[i,index[i]]=1
tn, fp, fn, tp = confusion_matrix(targets_binary.view(-1).cpu().data.numpy(), features_binary.view(-1).cpu().data.numpy()).ravel()
tnr = float(tn) / float(tn+fp)
fnr = float(fn) / float(fn+tp)
acc = float(tp+tn)/float(tp+tn+fp+fn)
acc_epoch.append(acc)
#values, index = torch.nn.Softmax(dim=1)(features).max(1)
#acc_epoch.append(accuracy_score(y_true=targets.cpu().data.numpy(), y_pred=index.cpu().data.numpy()))
return acc_epoch, loss_epoch
def do_epoch_classification(opt, loss_fn, discriminator, data_loader,
optimizer=None, fcn=None, coAttn=None):
#acc_epoch = []
auc_epoch = []
loss_epoch = []
feats_epoch = []
labels_epoch = []
correct = 0
total = 0
for batch_idx, (data, label) in enumerate(tqdm(data_loader)):
if not opt.fcn_applyOnDataLoader:
if opt.cuda:
data = data.cuda()
label = label.cuda()
if optimizer:
inputs = Variable(data, requires_grad=True)
else:
inputs = Variable(data, requires_grad=False)
targets = Variable(label)
batch_size, nchannels, x_size, y_size = inputs.shape
features = fcn(inputs)
else:
features = data
if opt.cuda:
features = features.cuda()
label = label.cuda()
targets = Variable(label)
if loss_fn:
loss = loss_fn(features, targets.long())
# Add the budget computation cost
#budget_loss = compute_time_restricted_budget_loss(loss, updated_states, num_glimpses=1)
#alpha = 0.5
#loss_total = alpha * loss + (1-alpha) * budget_loss
loss_total = loss
loss_epoch.append(loss_total.item())
# Training...
if optimizer and loss_fn:
optimizer.zero_grad()
loss_total.backward()
optimizer.step()
_, predicted = torch.max(torch.nn.Softmax(dim=1)(features), 1)
#total += targets.size(0)
#correct += (predicted == targets).sum().item()
#acc_epoch.append((predicted == targets).sum().item() / targets.size(0))
feats_epoch.append(features[:,1].squeeze().cpu().data.numpy())
labels_epoch.append(targets.long().data.cpu().numpy())
#return acc_epoch, loss_epoch
features = [item for sublist in feats_epoch for item in sublist]
labels = [item for sublist in labels_epoch for item in sublist]
auc_epoch = ranking.roc_auc_score(labels, features, average=None, sample_weight=None)
return auc_epoch, loss_epoch