-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdataset_qp.py
executable file
·51 lines (41 loc) · 2.49 KB
/
dataset_qp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import torch
import util
import datasets_util
class DatasetQP(torch.nn.Module):
def __init__(self, model, global_features_dim, geoloc_train_dataset, qp_threshold):
"""Dataset used to compute pairs of query-positive. These pairs are then
used in the weakly supervised losses (consistency and features-wise).
Parameters
----------
model : nn.Module, used to compute the query-positive pairs.
global_features_dim : int, dimension of the global features generated by the model.
geoloc_train_dataset : dataset_geoloc.GeolocDataset, containing the queries and gallery images.
threshold : float, only pairs with distance (in features space) below
the given threshold will be taken into account.
"""
super().__init__()
# Compute predictions with the given model on the given dataset
_, _, predictions, correct_bool_mat, distances = util.compute_features(geoloc_train_dataset, model, global_features_dim)
num_preds = predictions.shape[1]
real_positives = [[] for _ in range(geoloc_train_dataset.queries_num)]
# In query_positive_distances saves the index of query, positive, and their distance
# for each query-positive pair
query_positive_distances = []
for query_index in range(geoloc_train_dataset.queries_num):
query_path = geoloc_train_dataset.queries_paths[query_index]
for pred_index in range(num_preds):
if correct_bool_mat[query_index, pred_index] == 1:
distance = distances[query_index, pred_index]
positive = predictions[query_index, pred_index]
positive_path = geoloc_train_dataset.gallery_paths[positive]
real_positives[query_index].append(positive_path)
query_positive_distances.append((query_path, positive_path, distance))
# Filter away the query-positive pairs which are further than qp_threshold from each other
self.query_positive_distances = [qpd for qpd in query_positive_distances if qpd[2] < qp_threshold]
def __getitem__(self, index):
query_path, positive_path, _ = self.query_positive_distances[index]
query = datasets_util.open_image_and_apply_transform(query_path)
positive = datasets_util.open_image_and_apply_transform(positive_path)
return query, positive
def __len__(self):
return len(self.query_positive_distances)