forked from hankook/AugSelf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer_pca.py
146 lines (114 loc) · 4.89 KB
/
transfer_pca.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from argparse import ArgumentParser
from functools import partial
from pathlib import Path
import ignite.distributed as idist
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from sklearn.decomposition import PCA
from datasets import load_datasets_for_cosine_sim
from resnets import load_backbone_out_blocks
from utils import Logger, get_engine_mock
from sklearn.metrics import r2_score
def stringer_get_powerlaw(ss, trange):
# COPIED FROM Stringer+Pachitariu 2018b github repo! (https://github.com/MouseLand/stringer-pachitariu-et-al-2018b/blob/master/python/utils.py)
''' fit exponent to variance curve'''
logss = np.log(np.abs(ss))
y = logss[trange][:, np.newaxis]
trange += 1
nt = trange.size
x = np.concatenate((-np.log(trange)[:, np.newaxis], np.ones((nt, 1))), axis=1)
w = 1.0 / trange.astype(np.float32)[:, np.newaxis]
b = np.linalg.solve(x.T @ (x * w), (w * x).T @ y).flatten()
allrange = np.arange(0, ss.size).astype(int) + 1
x = np.concatenate((-np.log(allrange)[:, np.newaxis], np.ones((ss.size, 1))), axis=1)
ypred = np.exp((x * b).sum(axis=1))
alpha = b[0]
max_range = 500 if len(ss) >= 512 else len(
ss) - 10 # subtracting 10 here arbitrarily because we want to avoid the last tail!
fit_R2 = r2_score(y_true=logss[trange[0]:max_range], y_pred=np.log(np.abs(ypred))[trange[0]:max_range])
try:
fit_R2_100 = r2_score(y_true=logss[trange[0]:100], y_pred=np.log(np.abs(ypred))[trange[0]:100])
except:
fit_R2_100 = None
return alpha, ypred, fit_R2, fit_R2_100
def main(local_rank, args):
cudnn.benchmark = True
device = idist.device()
logdir = Path(args.ckpt).parent
args.origin_run_name = logdir.name
logger = Logger(
logdir=logdir, resume=True, wandb_suffix=f"feat_pca-{args.dataset}", args=args,
job_type="eval_pca"
)
datasets = load_datasets_for_cosine_sim(
dataset=args.dataset,
pretrain_data=args.pretrain_data,
datadir=args.datadir,
)
build_dataloader = partial(idist.auto_dataloader,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=False,
pin_memory=True)
testloader = build_dataloader(datasets['test'], drop_last=False)
transforms_dict = datasets["transforms"]
ckpt_path = args.ckpt
engine_mock = get_engine_mock(ckpt_path=ckpt_path)
logger.log_msg(f"Evaluating {ckpt_path}")
ckpt = torch.load(ckpt_path, map_location=device)
backbone = load_backbone_out_blocks(args)
backbone.load_state_dict(ckpt['backbone'])
build_model = partial(idist.auto_model, sync_bn=True)
backbone = build_model(backbone)
# EXTRACT FROZEN FEATURES
logger.log_msg('collecting features ...')
latents = []
with torch.no_grad():
for i, (X, _) in enumerate(testloader):
X_transformed = {
t_name: t(X) for (t_name, t) in transforms_dict.items()
}
X_norm = X_transformed.pop("identity")
feats_norm = backbone(X_norm.to(device))["backbone_out"].detach().cpu().numpy()
latents.append(feats_norm)
latents = np.concatenate(latents)
pca = PCA().fit(latents)
exp_var = pca.explained_variance_ratio_
cum = np.cumsum(exp_var)
for i, (e, c) in enumerate(zip(exp_var, cum)):
logger.log(
engine=engine_mock, global_step=-1,
component=i,
**{
f"test_pca/exp_variance/{args.dataset}": e,
f"test_pca/cum_variance/{args.dataset}": c,
}
)
alpha, _, R2, r2_range = stringer_get_powerlaw(
exp_var, np.arange(5, 50)
)
logger.log(
engine=engine_mock, global_step=-1,
**{
f"test_pca/a-req/alpha/{args.dataset}": alpha,
f"test_pca/a-req/r2/{args.dataset}": R2,
f"test_pca/a-req/r2_100/{args.dataset}": r2_range,
}
)
if __name__ == '__main__':
parser = ArgumentParser()
parser.add_argument('--ckpt', type=str, required=True)
parser.add_argument('--pretrain-data', type=str, default='stl10')
parser.add_argument('--dataset', type=str, required=True)
parser.add_argument('--datadir', type=str, default='/data')
parser.add_argument('--batch-size', type=int, default=256)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--model', type=str, default='resnet18')
parser.add_argument('--print-freq', type=int, default=100)
parser.add_argument('--distributed', action='store_true')
args = parser.parse_args()
args.backend = 'nccl' if args.distributed else None
args.num_backbone_features = 512 if args.model.endswith('resnet18') else 2048
with idist.Parallel(args.backend) as parallel:
parallel.run(main, args)