-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathcomputevoltage_Xmax_OptInput.py
751 lines (639 loc) · 37.3 KB
/
computevoltage_Xmax_OptInput.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
#!/usr/bin/env python
import os
from os.path import join
import sys
import numpy as np
#sys.path.append('/Users/nrenault/Desktop/GRAND/retro-master/lib/python/')
#wkdir = '/Users/nrenault/Desktop/GRAND/scripts_clean/'
wkdir = './'
import linecache
from scipy.fftpack import rfft, irfft, rfftfreq
from scipy.interpolate import interp1d
import retro
from retro.event import EventIterator, EventLogger
import modules
EARTH_RADIUS=6370949. #m
azstep=1 #step in azimuth in npy file
freqscale=1 #freq*2 if h/2 and sizeant/2
outputpower=0 #if wanted output is power
loaded=1 #if antenna is loaded or not in npy file
particle_list=[22.0, 11.0, -11.0, 111.0, 211.0, -211.0, 221.0] # 22:gamma, 11:e+-, 111:pi0, 211:pi+-, 211:eta
#impRLC R = 300;C = 6.5e-12;L = 1e-6; 20 300 MHz
RLp=np.array([0.536733768083299, 0.840010121593293, 1.200896057862110, 1.600090229038176, 2.006667705049151, 2.381373444983652, 2.685327039754095,2.890920915220645, 2.989008053352027, 2.988573924755322, 2.910298546933116, 2.778572562448605, 2.615623513015058, 2.438774302675680,2.260069404472798, 2.087095391770503, 1.924138291818527, 1.773244204213567, 1.635038639773870 , 1.509302421351773, 1.395352352338537,1.292281470704730, 1.199104504595046 , 1.114841938895556, 1.038565549999183, 0.969420412709374 , 0.906632958509609 , 0.849511074453546, 0.797439919119660, 0.749875669027360, 0.706338496130072 , 0.666405514438127, 0.629704091546769, 0.595905715891539 , 0.564720490529909, 0.535892256306097, 0.509194310914832, 0.484425672932856 , 0.461407833493318, 0.439981938133439, 0.420006344534532 , 0.401354506652400, 0.383913141085314, 0.367580636870446 , 0.352265674931463 , 0.337886027975219 , 0.324367515703664, 0.311643093771139 , 0.299652058008190, 0.288339348095085 , 0.277654937150177, 0.267553295648130, 0.257992919745857, 0.248935915510479 , 0.240347631749694, 0.232196335171802, 0.22445292247744])
RLp=RLp*100
XLp=np.array([1.149833973427903 , 1.347001618559050 , 1.469876468210024, 1.496656923296413, 1.411838459831799, 1.213746617081856 , 0.919238711558534, 0.561550538777911 , 0.181259529550333 , -0.184790883266832 , -0.510938360781749, -0.784380139061162 , -1.002688474655982 , -1.169915727151229, -1.293172262455534 , -1.380332931202411 , -1.438786540600538, -1.474902574702375, -1.493909155794964 , -1.499971154708314, -1.496345170687206, -1.485548051254960 , -1.469510769217091 , -1.449707994034062, -1.427262501557595 , -1.403027192021063 , -1.377648559710691, -1.351615388245273, -1.325295941574338 , -1.298966315222550 , -1.272832045980507, -1.247044599699961 , -1.221713972961578 , -1.196918345352935 , -1.172711490165158, -1.149128477825457 , -1.126190075642858 , -1.103906149182129 , -1.082278296775352, -1.061301893203182, -1.040967676805738, -1.021262982755671, -1.002172701363368 , -0.983680022166382, -0.965767010753354 , -0.948415054722766 , -0.931605207084645 , -0.915318449184856 , -0.899535890421292, -0.884238918293781 , -0.869409309431790 , -0.855029309984293 , -0.841081691988703 , -0.827549790949401 , -0.814417528766047 , -0.801669425292115, -0.789290601124629])
XLp=XLp*100
fr=np.arange(20,301,5)
##### antenna response file horizontal
#fileleff=wkdir+'HorizonAntenna_leff_loaded.npy' # 'HorizonAntenna_leff_notloaded.npy' if loaded=0, EW component, used as well for NS
fileleff=wkdir+'HorizonAntenna_EWarm_leff_loaded.npy' # 'HorizonAntenna_leff_notloaded.npy' if loaded=0, EW component, used as well for NS
freq1,realimp1,reactance1,theta1,phi1,lefftheta1,leffphi1,phasetheta1,phasephi1=np.load(fileleff) ### this line cost 6-7s
######For this three lines it already needs several s
#freq,realimp,reactance,theta,phi,lefftheta,leffphi,phasetheta,phasephi=np.load(fileleff) ### this line cost 6-7s
RL1=interp1d(fr, RLp, bounds_error=False, fill_value=0.0)(freq1[:,0])
XL1=interp1d(fr, XLp, bounds_error=False, fill_value=0.0)(freq1[:,0])
##### antenna response file ---- vertical
fileleff_vert=wkdir+'HorizonAntenna_leff_loaded.npy' # 'HorizonAntenna_leff_notloaded.npy' if loaded=0, EW component, used as well for NS
freq_vert,realimp_vert,reactance_vert,theta_vert,phi_vert,lefftheta_vert,leffphi_vert,phasetheta_vert,phasephi_vert=np.load(fileleff_vert) ### this line cost 6-7s
######For this three lines it already needs several s
#freq,realimp,reactance,theta,phi,lefftheta,leffphi,phasetheta,phasephi=np.load(fileleff) ### this line cost 6-7s
RL_vert=interp1d(fr, RLp, bounds_error=False, fill_value=0.0)(freq_vert[:,0])
XL_vert=interp1d(fr, XLp, bounds_error=False, fill_value=0.0)(freq_vert[:,0])
#===========================================================================================================
def GRANDtoNEC(zenith=None, azimuth =None):
#===========================================================================================================
zen = (180-zenith)
azim = azimuth + 90 # az_ant=az_GRAND +90deg
if azim>360:
azim = azim-360
return [zen,azim]
#===========================================================================================================
def NECtoGRAND(zenith=None, azimuth =None):
#===========================================================================================================
zen = (180-zenith)
azim = azimuth - 90 # az_GRAND=az_ant -90deg
if azim>360:
azim = azim-360
elif azim<0:
azim = azim+360
return [zen,azim]
### efield in V/m,azimuth, zenith and alpha in deg, time in s # # # EW=1: EW file, EW=0: NS file
#===========================================================================================================
def get_voltage(time1=None,Ex=None, Ey=None, Ez=None, zenith=None, azimuth =None, EW=1):
#===========================================================================================================
# Note: azim & zenith are in GRAND conventions
zen, azim = GRANDtoNEC(zenith,azimuth)
#print 'get_voltage: computing antenna response for wave with zenith=',zen,'deg, azimuth=',azim,'deg (**NEC conventions**).'
zen = np.deg2rad(zen)
azim = np.deg2rad(azim)
delt = time1[1]-time1[0];
Fs = 1/delt
timeoff=time1[0] # time offset, to get absolute time
time1 = (time1-time1[0]) #resetted to zero
#print 'Efield signal length: ', time1[-1]*1e9 , 'ns.'
##### efield in antenna frame
szen = np.sin(zen);
czen = np.cos(zen);
saz = np.sin(azim);
caz = np.cos(azim);
#amplitudet = czen*(caz*Ex+saz*Ey)-szen*Ez # Wrong because Ex&Ey defined in GRAND ref
#amplitudep = -saz*Ex+caz*Ey # Wrong because Ex&Ey defined in GRAND ref
#We have to rotate the Ex & Ey vectors by 90deg around the z axis to project them into the NEC referential
#(y_NEC = x_Grand & x_NEC=-y_GRAND, since delta az( NEC- GRAND) =90deg => 90deg rotation around zaxis)
amplitudet = czen*(caz*Ey-saz*Ex)-szen*Ez
amplitudep = -saz*Ey-caz*Ex
## for the antenna response switch back to degree
azim = np.rad2deg(azim)
zen = np.rad2deg(zen)
##################################
### all the settings for the 3 different antenna arms:
freq=freq1
realimp=realimp1
reactance=reactance1
theta=theta1
phi=phi1
lefftheta=lefftheta1
leffphi=leffphi1
phasetheta=phasetheta1
phasephi=phasephi1
RL=RL1
XL=XL1
if EW==0: #NS component
# still our fake NS component
azim= azim + 90. #0.5*pi # az=az +90deg, to get antenna response for a rotated shower which would fake the NS antenna component
if azim >360.:
azim= azim- 360.
if EW==2: # vertical component, override the used parameters
freq=freq_vert
realimp=realimp_vert
reactance=reactance_vert
theta=theta_vert
phi=phi_vert
lefftheta=lefftheta_vert
leffphi=leffphi_vert
phasetheta=phasetheta_vert
phasephi=phasephi_vert
RL=RL_vert
XL=XL_vert
#############################
nfreq=len(freq[:,0])
f=np.zeros(nfreq)
RA=np.zeros(nfreq)
XA=np.zeros(nfreq)
ltr=np.zeros(nfreq)
lta=np.zeros(nfreq)
lpr=np.zeros(nfreq)
lpa=np.zeros(nfreq)
if azstep==5:
roundazimuth=round(azim/10)*10+round((azim-10*round(azim/10))/5)*5
elif azstep==1:
roundazimuth=round(azim)
else:
print('Error on azimuth step!')
return(0)
if roundazimuth>=91 and roundazimuth<=180:
roundazimuth=180-roundazimuth
if roundazimuth>=181 and roundazimuth<=270:
roundazimuth=roundazimuth-180
if roundazimuth>=271 and roundazimuth<=360:
roundazimuth=360-roundazimuth
for i in range(nfreq):
f[i]=freq[i,0]*freqscale
indtheta=np.nonzero(theta[i,:]==round(zen))[0]
indphi=np.nonzero(phi[i,:]==roundazimuth)[0]
indcom=np.intersect1d(indtheta,indphi)
ltr[i]=lefftheta[i,indcom]
lta[i]=np.deg2rad(phasetheta[i,indcom]) #*np.pi/180
lpr[i]=leffphi[i,indcom]
lpa[i]=np.deg2rad(phasephi[i,indcom]) #*np.pi/180
if loaded==0:
RA[i]=realimp[i,0]
XA[i]=reactance[i,0]
Rlefft=ltr[i]*np.cos(lta[i])
Xlefft=ltr[i]*np.sin(lta[i])
Rleffp=lpr[i]*np.cos(lpa[i])
Xleffp=lpr[i]*np.sin(lpa[i])
Rleqt=((Rlefft*RL[i]-Xlefft*XL[i])*(RA[i]+RL[i]) + (Rlefft*XL[i]+Xlefft*RL[i])*(XA[i]+XL[i])) / ((RA[i]+RL[i])**2+(XA[i]+XL[i])**2)
Xleqt=((Rlefft*RL[i]+Xlefft*XL[i])*(XA[i]+XL[i]) + (Rlefft*XL[i]+Xlefft*RL[i])*(RA[i]+RL[i])) / ((RA[i]+RL[i])**2+(XA[i]+XL[i])**2)
ltr[i]=np.sqrt(Rleqt**2+Xleqt**2)
print(Rleqt,Xleqt,ltr[i])
lta[i]=np.arccos(Rleqt/ltr[i])
Rleqp=((Rleffp*RL[i]-Xleffp*XL[i])*(RA[i]+RL[i]) + (Rleffp*XL[i]+Xleffp*RL[i])*(XA[i]+XL[i])) / ((RA[i]+RL[i])**2+(XA[i]+XL[i])**2)
Xleqp=((Rleffp*RL[i]+Xleffp*XL[i])*(XA[i]+XL[i]) + (Rleffp*XL[i]+Xleffp*RL[i])*(RA[i]+RL[i])) / ((RA[i]+RL[i])**2+(XA[i]+XL[i])**2)
lpr[i]=np.sqrt(Rleqp**2+Xleqp**2)
print(Rleqp,lpr[i])
lpa[i]=np.arccos(Rleqp/lpr[i])
if loaded==0:#phases are not unwrap! so:
for i in range(1,nfreq):
while lpa[i]-lpa[i-1]<-np.pi: #180*np.pi/180:
lpa[i]=lpa[i]+ 2.*np.pi #360*np.pi/180
while lpa[i]-lpa[i-1]> np.pi: #180*np.pi/180:
lpa[i]=lpa[i]- 2.*np.pi #360*np.pi/180
while lta[i]-lta[i-1]<-np.pi: #180*np.pi/180:
lta[i]=lta[i]+ 2.*np.pi #360*np.pi/180
while lta[i]-lta[i-1]>np.pi: #180*np.pi/180:
lta[i]=lta[i]- 2.*np.pi #360*np.pi/180
#print(round(zenith),roundazimuth,f,ltr,lta,lpr,lpa,Fs)
###############################
fmin=f[0]
fmax=f[-1]
f=f*1e6
nf = int(2**np.floor(np.log(len(amplitudet))/np.log(2)))
while Fs/nf > fmin*1e6: # <== Make sure that the DFT resolution is at least fmin.
nf *= 2
F = rfftfreq(nf)*Fs
modulust = interp1d(f, ltr, bounds_error=False, fill_value=0.0)(F)
phaset = interp1d(f, lta, bounds_error=False, fill_value=0.0)(F)
modulusp = interp1d(f, lpr, bounds_error=False, fill_value=0.0)(F)
phasep = interp1d(f, lpa, bounds_error=False, fill_value=0.0)(F)
if outputpower:
RLinter = interp1d(f, RL, bounds_error=False, fill_value=0.0)(F)
phaset -= phaset[0] # Switch the phase origin to be consistent with a real signal.
phasep -= phasep[0] # Switch the phase origin to be consistent with a real signal.
#if we want P=V2/RL -> incorrect
if outputpower:
modulusp[RLinter!=0]=modulusp[RLinter!=0]/np.sqrt(RLinter[RLinter!=0])
modulust[RLinter!=0]=modulust[RLinter!=0]/np.sqrt(RLinter[RLinter!=0])
#B and D are V in freq domain, they are complex
A = rfft(amplitudet, nf)
ct = np.cos(phaset)
st = np.sin(phaset)
B = np.zeros(A.shape)
B[1:-1:2] = modulust[1:-1:2]*(A[1:-1:2]*ct[1:-1:2]-A[2:-1:2]*st[2:-1:2])
B[2:-1:2] = modulust[2:-1:2]*(A[1:-1:2]*st[1:-1:2]+A[2:-1:2]*ct[2:-1:2])
B[0] = A[0]*modulust[0]
B[-1] = A[-1]*modulust[-1]
C = rfft(amplitudep, nf)
cp = np.cos(phasep)
sp = np.sin(phasep)
D = np.zeros(C.shape)
D[1:-1:2] = modulusp[1:-1:2]*(C[1:-1:2]*cp[1:-1:2]-C[2:-1:2]*sp[2:-1:2])
D[2:-1:2] = modulusp[2:-1:2]*(C[1:-1:2]*sp[1:-1:2]+C[2:-1:2]*cp[2:-1:2])
D[0] = C[0]*modulusp[0]
D[-1] = C[-1]*modulusp[-1]
#we should apply 1/sqrt(RL) to the real part and then put vt and vp squared, after ifft
vt=irfft(B)
vp=irfft(D)
if outputpower:
vt=vt**2
vp=vp**2
voltage = vp + vt
timet = np.arange(0, len(vt))/Fs
timep = np.arange(0, len(vp))/Fs
#print ' Peak to peak voltage amplitude = ', max(voltage) - min(voltage),'muV'
return(voltage, timet+timeoff)
#===========================================================================================================
def effective_zenith(zen, azim, alpha, x_ant, y_ant, z_ant, x_xmax=0, y_xmax=0, z_xmax=3000.):
#===========================================================================================================
# Effective zenith (computed in GRAND conventions, ie theta>90deg <=> downward)
zen = np.deg2rad(zen)
azim = np.deg2rad(azim)
alpha = np.deg2rad(alpha)
#print "input zen, azim, alpha : ", np.rad2deg(zen), np.rad2deg(azim), np.rad2deg(alpha)
#print 'Now computing effective zenith angle to Xmax from antenna location.'
# shower direction: where it goes to
v = np.array([np.cos(azim)*np.sin(zen), np.sin(azim)*np.sin(zen), np.cos(zen)]) # or *-1: change the direction
# vector for zenith=90
b = np.array([np.cos(azim), np.sin(azim) ,0.])
# projection v onto b
v_p= np.linalg.norm(v)* np.cos(0.5*np.pi-zen) *b/np.linalg.norm(b)
v_p /=np.linalg.norm(v_p)
Xmax= np.array([x_xmax,y_xmax,z_xmax])
#print 'Xmax position:',Xmax
#print(v, Xmax)
ant= np.array([x_ant, y_ant, z_ant]) # antenna position
# unit vetor between xmax and antenna
u_xmax = Xmax - ant
u_xmax = u_xmax/np.linalg.norm(u_xmax)
#print u_xmax
# antenna vector
# at the moment slope always facing the shower => azim_ant = 180. -azim, mountain slope alpha works as zenith
u_ant= np.array([ np.cos(np.pi-azim)* np.sin(alpha), np.sin(np.pi-azim)* np.sin(alpha), np.cos(alpha)])
#print(u_ant)
# get effective zenith, the angle between antenna vector and vector between xmax and antenna
cos_zen_eff= np.dot(u_xmax, u_ant)
zen_eff= np.arccos(cos_zen_eff)
zen_eff = 180-np.rad2deg(zen_eff)
return zen_eff
#===========================================================================================================
def effective_angles(alpha, beta, x_ant, y_ant, z_ant, x_xmax=0, y_xmax=0, z_xmax=3000.):
#===========================================================================================================
#the following replace the lines above, output is angles already in NEC convention
#it calculates zenith and azimuth angles of Xmax in the antenna frame (where antenna wood pole is along the z axis)
def TopoToAntenna(x,y,z,xant,yant,zant,alpha,beta): #from coordinates in the topography frame to coordinates in the antenna frame
xp=x-xant
yp=y-yant
zp=z-zant
alpha=alpha*np.pi/180 #around y=theta
beta=beta*np.pi/180 #around z=phi
cb = np.cos(beta)
sb = np.sin(beta)
ca = np.cos(alpha)
sa = np.sin(alpha)
rotzy = np.array([[ca*cb,-ca*sb,sa],[sb,cb,0],[-sa*cb,sa*sb,ca]]) #Ry(alpha)*Rz(beta)
rotxy = np.array([[ca,sa*sb,sa*cb],[0,cb,-sb],[-sa,ca*sb,ca*cb]]) #Ry(alpha)*Rx(beta)
[xpp,ypp,zpp] = rotzy.dot([xp,yp,zp])
print xpp,ypp,zpp
return xpp,ypp,zpp
xmax_inant=TopoToAntenna(x_xmax, y_xmax, z_xmax, x_ant, y_ant, z_ant, alpha, beta)
xmax_inant=xmax_inant/np.linalg.norm(xmax_inant)
zen_inant=np.arccos(xmax_inant[2])
azim_inant=np.arccos(xmax_inant[1])*180/np.pi
zen_inant=zen_inant*180/np.pi
zen_inant,azim_inant = NECtoGRAND(zen_inant, azim_inant)
return zen_inant,azim_inant
#===========================================================================================================
def inputfromjson(path,json_file):
#===========================================================================================================
# shower you are interested in
showerID = str(path.split('/')[-1])
if not showerID:
showerID = str(path.split('/')[-2])
# find that shower in the json file
event = [evt for evt in EventIterator(json_file) if evt["tag"]==showerID][0]
### DECAY
decay_pos=event["tau_at_decay"][1]
#print "decay position: ", decay_pos
injection_height=decay_pos[2]
decay_pos=decay_pos+np.array([0.,0.,EARTH_RADIUS]) # corrected for earth radius
#print "decay position after correction: ", decay_pos
decay_altitude=event["tau_at_decay"][3]
#print "decay decay_altitude: ", decay_altitude
### ANGLES
v=event["tau_at_decay"][2]# shower direction, assuming decay products strongly forward beamed
zenith_sim = np.degrees(np.arccos(np.dot(v, decay_pos) / np.linalg.norm(decay_pos))) # zenith in GRAND conv.
#print "theta: ", zenith_sim
#orthogonal projection of v onto flat plane to get the azimuth
x=np.array([1.,0.,0.]) #NS
y=np.array([0.,1.,0.]) #EW
proj_v= np.dot(v,x)*x + np.dot(v,y)*y
azimuth_sim = np.degrees(np.arccos(np.dot(proj_v, x))) # azimuth in GRAND conv., rt NORTH
if proj_v[1]<0.: # y component of projection negativ, means azimuth >180deg
azimuth_sim = 360.-azimuth_sim
#print "azimuth: ", azimuth_sim
### ENERGY
ep_array=np.zeros(len(event["decay"])-1)
for i in range(1, len(event["decay"])): #len(event["decay"])-1 # gives you the number of decay products in event
if float(event["decay"][i][0]) in particle_list: # just for valid particles
pp=event["decay"][i][1] # momentum vector, second decay product: event["decay"][2][1]
ep_array[i-1]=np.sqrt(pp[0]**2+pp[1]**2+pp[2]**2)# in GeV
# print "particle ", str(i), "PID:",event["decay"][i][0]," energy in EeV: ", ep_array[i-1]*1e-9 #np.sqrt(pp[0]**2+pp[1]**2+pp[2]**2)* 1.e-9
energy= np.sum(ep_array)* 1.e-9 # GeV in EeV
#print "energy in EeV: ", energy
### PID primary
#part_dic={'221.0':'eta','211.0': 'pi+', '-211.0': 'pi-','111.0': 'pi0', '22.0':'gamma', '13.0':'muon', '11.0': 'electron', '15.0':'tau', '16.0':'nu(t)', '321.0': 'K+', '-321.0': 'K-','130.0':'K0L', '310.0':'K0S','-323.0':'K*+'}
particle=int(np.argmax(ep_array) +1) # not forget about the inital neutrino and array start with 0
PID= float(event["decay"][int(np.argmax(ep_array) +1)][0])
el_list=[22.0, 11.0, -11.0, 111.0] #'22.0':'gamma', '11.0': 'electron', '-11':positron, '111.0': 'pi0'
if PID in el_list:
primary="electron"
else: # pion-like
primary="pion"
return zenith_sim,azimuth_sim,energy,injection_height,primary
#===========================================================================================================
def inputfromtxt(input_file_path):
#===========================================================================================================
particule = ['eta','pi+','pi-','pi0','Proton','p','proton','gamma','Gamma','electron','Electron','e-','K+','K-','K0L','K0S','K*+'
,'muon+','muon-','Muon+','Muon-','mu+','mu-','tau+','tau-','nu(t)','Positron','positron','e+']
datafile = file(input_file_path)
for line in datafile:
if 'PrimaryZenAngle' in line:
zen=float(line.split(' ',-1)[1])
zen = 180-zen #conversion to GRAND convention i.e. pointing towards antenna/propagtion direction
if 'PrimaryAzimAngle' in line:
azim = float(line.split(' ',-1)[1])+180 #conversion to GRAND convention i.e. pointing towards antenna/propagtion direction
if azim>=360:
azim= azim-360
if 'RASPASSHeight' in line:
injh = float(line.split(' ',-1)[2])
if 'PrimaryEnergy' in line:
energy = float(line.split(' ',-1)[1])
if 'PrimaryParticle' in line:
primarytype = str(line.split(' ',-1)[1])
if primarytype[-1]=='\n':
primarytype=primarytype[0:-1]
if 'AddSpecialParticle RASPASSMulti' in line:
RASPASSMulti_line = line
try:
injh
except NameError:
injh = 100000. #Case of a cosmic for which no injection height is defined in the input file and is then set to 100 km by ZHAireS
try:
energy
except NameError:
print 'No primary energy found in the ZHAireS input text file.'
exit()
try:
primarytype
except NameError:
primarytype = None
energy = energy *1e-18
if primarytype=='RASPASSMulti':
tmp = RASPASSMulti_line.split(' ',-1)
if tmp[-1][-1]=='\n':
tmp[-1]=tmp[-1][0:-1]
prod = [x for x in particule if x in set(tmp)]
ind_prod = np.array([tmp.index(x) for x in prod],dtype=int)
Wprod = [float(tmp[ind]) for ind in ind_prod+1]
primarytype = prod[np.argmax(Wprod)]
if primarytype=='Proton' or primarytype=='K+' or primarytype=='K-' or primarytype=='K0L' or primarytype=='K0S' or primarytype=='K*+':
primarytype='proton'
elif primarytype=='gamma' or primarytype=='Gamma' or primarytype=='Electron':
primarytype='electron'
elif primarytype=='pi0' or primarytype=='pi-' or primarytype=='pi+':
primarytype='pion'
return zen,azim,energy,injh,primarytype
#===========================================================================================================
def compute(opt_input,path, effective,zenith_sim, azimuth_sim, energy, injection_height, primary,json_file=None):
#===========================================================================================================
if opt_input=='json':
# shower you are interested in
showerID = str(path.split('/')[-1])
if not showerID:
showerID = str(path.split('/')[-2])
# Find that shower in the json file
event = [evt for evt in EventIterator(json_file) if evt["tag"]==showerID][0]
log_event = EventLogger(path=json_file)
voltage=[]
time_peaks=[]
##########################################################################################
###Handing over one antenna or a whole array
if opt_input=='txt':
if len(sys.argv)>=6: # just one specif antenna handed over
start=int(sys.argv[5]) # antenna ID
end=start+1
# print "single antenna with ID: ", str(start)," handed over"
if len(sys.argv)<6: # grep all antennas from the antenna file
positions=np.genfromtxt(path+'/antpos.dat')
start=0
end=len(positions)
# print "Array with ", end, " antennas handed over"
elif opt_input=='json':
if len(sys.argv)>=6: # just one specif antenna handed over
start=int(sys.argv[5]) # antenna ID
end=start+1
# print "single antenna with ID: ", str(start)," handed over"
if len(sys.argv)<6: # grep all antennas from the antenna file
positions=np.array(event["antennas"],dtype=float)
decay_pos=event["tau_at_decay"][1]
positions = positions - [decay_pos[0],decay_pos[1],0.]
#positions=np.genfromtxt(path+'/antpos.dat')
start=0
end=len(positions)
#print "Array with ", end, " antennas handed over"
elif opt_input=='manual':
if len(sys.argv)>=10: # just one specif antenna handed over
start=int(sys.argv[9]) # antenna ID
end=start+1
# print "single antenna with ID: ", str(start)," handed over"
if len(sys.argv)<10: # grep all antennas from the antenna file
positions=np.genfromtxt(path+'/antpos.dat')
start=0
end=len(positions)
# print "Array with ", end, " antennas handed over"
if effective==1: # effective zenith caclculation needs Xmax position as input
# print "effective zenith calculated - Xmax position approximated ..."
# Then compute Xmax
caz = np.cos(np.deg2rad(azimuth_sim))
saz = np.sin(np.deg2rad(azimuth_sim))
czen = np.cos(np.deg2rad(zenith_sim))
szen = np.sin(np.deg2rad(zenith_sim))
Xmax_primary = modules._getXmax(primary, energy, np.deg2rad(zenith_sim)) # approximation based on values from plots for gamma (=e) and protons (=pi) # g/cm2
Xmax_height, Xmax_distance = modules._dist_decay_Xmax(np.deg2rad(zenith_sim), injection_height, Xmax_primary) # d_prime: distance from decay point to Xmax
Xmax = Xmax_distance*np.array([caz*szen, saz*szen, czen])+np.array([0,0,injection_height])
# print 'Xmax=',Xmax_primary,' Xmax height=',Xmax_height,' Xmax distance =',Xmax_distance,'Xmax position= ',Xmax
# print 'Now computing Xmax position from injection height=',injection_height,'m and (zen,azim) values.'
###### loop over l --- LOOP OVER ANTENNA ARRAY
for l in range(start,end):
efieldtxt=path+'/a'+str(l)+'.trace'
# print 'Wave direction: zenith = ', zenith_sim, ' deg, azimuth = ', azimuth_sim, 'deg. (GRAND conventions), mountain slope: ', alpha_sim, 'deg.'
# print 'Efield file: ', efieldtxt
# Model the input signal.
try:
time1_sim, Ex_sim, Ey_sim,Ez_sim = np.loadtxt(efieldtxt,delimiter=' ',usecols=(0,1,2,3),unpack=True)
except IOError:
continue
# NOTE: adapt to your time from whatever to s
time1_sim= time1_sim*1e-9 # time has to be handed in s
#print 'Now computing antenna response...'
if effective==1:
# Compute effective zenith
# First get antenna position
#print 'Reading antenna position from parameter input.'
if (opt_input=='json' or opt_input=='txt') and (len(sys.argv)==11) :
x_sim = float(sys.argv[6])
y_sim = float(sys.argv[7])
z_sim = float(sys.argv[8])
# include a mountain slope - correction of zenith angle
alpha_sim=float(sys.argv[9])
beta_sim=float(sys.argv[10])
elif (opt_input=='manual') and (len(sys.argv)==15) :
x_sim = float(sys.argv[10])
y_sim = float(sys.argv[11])
z_sim = float(sys.argv[12])
# include a mountain slope - correction of zenith angle
alpha_sim=float(sys.argv[13])
beta_sim=float(sys.argv[14])
else :
try :
if opt_input=='json':
x_sim,y_sim,z_sim = positions[l] #,alpha_sim,beta_sim
alpha_sim = 0.
beta_sim = 0.
else:
#print 'Trying to read antenna position from antpos.dat file...'
numberline = int(l) + 1
line = linecache.getline(path+'/antpos.dat', numberline)
#[x_sim, y_sim, z_sim] = map(float, line.split())
[x_sim, y_sim, z_sim, alpha_sim, beta_sim] = map(float, line.split())
#print 'Read antenna position from antpos.dat file... Antenna',l,' at position [', x_sim, y_sim, z_sim,'].'
except :
print 'No antenna position file found, please put antpos.dat in', path, 'or enter check antenna informations in json file or enter antenna positions as arguments.'
sys.exit()
# Finally compute effective zenith
#alpha_sim = 0.
# Hack OMH 24/01
alpha_sim=10
beta_sim=0
x_sim = 400000
y_sim = 0
z_sim = 0
print "input zen, azim, alpha,beta : ", zenith_sim, azimuth_sim, alpha_sim,beta_sim
#zenith_eff = effective_zenith(zenith_sim, azimuth_sim, alpha_sim, x_sim, y_sim, z_sim, Xmax[0], Xmax[1], Xmax[2])
#print 'zenith_eff = ',zenith_eff
zen_inant,azim_inant = effective_angles(alpha_sim, beta_sim, x_sim, y_sim, z_sim, Xmax[0], Xmax[1], Xmax[2])
print "effective zenith and azimuth in GRAND convention: ", zen_inant,azim_inant,' deg'
else: # in case effective zenith not wanted, one still has to account for mountain slope
# zenith: correct for mountain slope
#zenith_eff= 180.-(zenith_sim+alpha_sim) # in antenna convention
#zenith_eff= 180.- zenith_eff # back to GRAND conventions
print('Not supported')
#if zenith_eff < 90 :
if zen_inant < 90 : #>90 if in NEC convention
pass
print ' --- Wave coming from ground (GRAND zenith smaller than 90deg), antenna response not computed for that angle. Abort --- '
#exit()
else:
# Compute the output voltage for EW component
# print '*** Computing EW voltage...'
#voltage_EW, timeEW = get_voltage( time1=time1_sim,Ex=Ex_sim, Ey=Ey_sim, Ez=Ez_sim, zenith=zenith_eff, azimuth=azimuth_sim, EW=1)
voltage_EW, timeEW = get_voltage( time1=time1_sim,Ex=Ex_sim, Ey=Ey_sim, Ez=Ez_sim, zenith=zen_inant, azimuth=azim_inant, EW=1)
# Compute the output voltage for NS component -- TODO add here the correct antenna file at some point
# print '*** Computing SN voltage...'
#voltage_NS, timeNS = get_voltage( time1=time1_sim,Ex=Ex_sim, Ey=Ey_sim, Ez=Ez_sim, zenith=zenith_eff, azimuth=azimuth_sim, EW=0)
voltage_NS, timeNS = get_voltage( time1=time1_sim,Ex=Ex_sim, Ey=Ey_sim, Ez=Ez_sim, zenith=zen_inant, azimuth=azim_inant, EW=0)
# Compute the output voltage for vertical component -- TODO add here the correct antenna file at some point, at the moment equivalent to EW arm
# print '*** Computing Vertical voltage...'
#voltage_vert, timevert = get_voltage( time1=time1_sim,Ex=Ex_sim, Ey=Ey_sim, Ez=Ez_sim, zenith=zenith_eff, azimuth=azimuth_sim, EW=2)
voltage_vert, timevert = get_voltage( time1=time1_sim,Ex=Ex_sim, Ey=Ey_sim, Ez=Ez_sim, zenith=zen_inant, azimuth=azim_inant, EW=2)
#pl.savetxt(path+'out_'+str(l)+'.txt', (timeEW, voltage_EW, voltage_NS), newline='\r\n')#, voltage_NS)) # is not working correctly
f = file(path+'/out_'+str(l)+'.txt',"w")
print "OUTFILE : ", path+'/out_'+str(l)+'.txt'
for i in np.arange(len(timeEW)):
print >>f,"%1.5e %1.2e %1.2e %1.2e" % (timeEW[i], voltage_EW[i], voltage_NS[i], voltage_vert[i] ) # same number of digits as input
f.close()
###plots
DISPLAY=1
if DISPLAY==1:
import pylab as pl
import matplotlib.pyplot as plt
plt.figure(1, facecolor='w', edgecolor='k')
plt.subplot(211)
plt.plot(time1_sim*1e9,Ey_sim, label="Ey = EW")
plt.plot(time1_sim*1e9,Ex_sim, label="Ex = NS")
plt.plot(time1_sim*1e9,Ez_sim, label="Ez = UP")
plt.xlabel('Time (nsec)')
plt.ylabel('Electric field (muV/m)')
plt.legend(loc='best')
plt.subplot(212)
plt.plot(timeEW*1e9,voltage_EW, label="EW")
plt.plot(timeNS*1e9,voltage_NS, label="NS")
plt.plot(timeNS*1e9,voltage_vert, label="Vertical")
plt.xlabel('Time (nsec)')
plt.ylabel('Voltage (muV)')
plt.legend(loc='best')
plt.show()
##################################################################
##################################################################
if opt_input=='json':
#### additional output needed for later study, added in the json file
# p2p voltage: antenna ID, p2p EW, NS, UP, EW+NS
voltage_com=np.copy(voltage_EW)
for i in range (0, len(voltage_EW)):
voltage_com[i]+=voltage_NS[i]
v_list =( str(l), max(voltage_EW) - min(voltage_EW), max(voltage_NS) - min(voltage_NS), max(voltage_vert) - min(voltage_vert), max(voltage_com) - min(voltage_com) )
voltage.append( v_list )
# time of peaks and value: t_EW_max, v_EW_max, t_EW_min, v_EW_min,.... EW, NS, vert, EW+NS
import operator
EW_ind_max, value = max(enumerate(voltage_EW), key=operator.itemgetter(1))
EW_ind_min, value = min(enumerate(voltage_EW), key=operator.itemgetter(1))
NS_ind_max, value = max(enumerate(voltage_NS), key=operator.itemgetter(1))
NS_ind_min, value = min(enumerate(voltage_NS), key=operator.itemgetter(1))
vert_ind_max, value = max(enumerate(voltage_vert), key=operator.itemgetter(1))
vert_ind_min, value = min(enumerate(voltage_vert), key=operator.itemgetter(1))
com_ind_max, value = max(enumerate(voltage_com), key=operator.itemgetter(1))
com_ind_min, value = min(enumerate(voltage_com), key=operator.itemgetter(1))
time_peaks.append( (round(timeEW[EW_ind_max],11), voltage_EW[EW_ind_max], round(timeEW[EW_ind_min],11), voltage_EW[EW_ind_min],
round(timeNS[NS_ind_max],11), voltage_NS[NS_ind_max], round(timeNS[NS_ind_min],11), voltage_NS[NS_ind_min],
round(timevert[vert_ind_max],11), voltage_vert[vert_ind_max], round(timevert[vert_ind_min],11), voltage_vert[vert_ind_min],
round(timeEW[com_ind_max],11), voltage_com[com_ind_max], round(timeEW[com_ind_min],11), voltage_com[com_ind_min] ) )
############### end of loop over antennas
if opt_input=='json':
if len(voltage)==0:
print "- effective zenith not fulfilled - NO VOLTAGE COMPUTED"
log_event(**event)
else:
# add the additional informations to the shower event
event['voltage'] = voltage # muV
event['time_peaks'] = time_peaks # s, muV
log_event(**event)
####################################################################################################################################
####################################################################################################################################
####################################################################################################################################
#===========================================================================================================
# Compute the time dependent voltage
#===========================================================================================================
if __name__ == '__main__':
if len(sys.argv)<5:
print """\
Wrong minimum number of arguments. All angles are to be expressed in degrees and in GRAND convention.
Usage:
if json file or ZHAireS inp file input:
python computevoltage.py [input option] [effective 0/1] [path to traces] [json file/inp file] [opt: antenna ID] [opt: antenna x,y,z,alpha,beta]
example: python computevoltage.py json/txt 0/1 ./ ../Danton/*.json 7 100 100 1000 10 5
if manual input:
python computevoltage.py [input option] [effective 0/1] [path to traces] [primary] [zenith] [azimuth] [energy in EeV] [injection height above sea level in m] [opt: antenna ID] [opt: antenna x,y,z,alpha,beta]
example: python computevoltage.py manual 0/1 ./ proton 85 205 0.5 1500 7 100 100 1000 10 5
"""
## -> computes voltage traces for EW, NS and Vertical antenna component and saves the voltage traces in out_'.txt (same folder as a'.trace)
## -> produces a new json file with copying the original one, but saves as well additional informations as p2p-voltages, and peak times and values in *.voltage.json in the same folder as the original json file
sys.exit(0)
print "READING INPUT PARAMETERS"
# Decide where to retrieve the shower parameters : #json for json file, txt for ZHAireS input file or manual to hand them over by hand
opt_input = str(sys.argv[1])
print opt_input
# decide if the effectice zenith should be calculated (1) or not (0)
effective = float(sys.argv[2])
print effective
# which efield trace do you wanna read in. to be consistent the script works with the antenna ID
path=sys.argv[3] #folder containing the traces and where the output should go to
if opt_input=='txt':
# Read the ZHAireS input (.inp) file to extract the primary type, the energy, the injection height and the direction
inp_file = str(sys.argv[4])
zenith_sim,azimuth_sim,energy,injection_height,primary = inputfromtxt(inp_file)
json_file = None
elif opt_input=='json':
# Read the json file to extract the primary type, the energy, the injection height, and the direction
json_file = str(sys.argv[4])
zenith_sim,azimuth_sim,energy,injection_height,primary = inputfromjson(path,json_file)
elif opt_input=='manual':
primary = str(sys.argv[4])
zenith_sim = float(sys.argv[5]) #deg
azimuth_sim = float(sys.argv[6]) #deg
energy = float(sys.argv[7]) #EeV
injection_height = float(sys.argv[8]) #m above sea level
json_file = None
#print 'shower = ',zenith_sim,azimuth_sim,energy
print "VOLTAGE COMPUTATION STARTED"
compute(opt_input,path, effective, zenith_sim, azimuth_sim, energy, injection_height, primary,json_file)
print "VOLTAGE COMPUTED"