-
-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathautopilot_utils.py
32 lines (27 loc) · 1007 Bytes
/
autopilot_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import cv2
import torch
import torchvision.transforms as transforms
import torch.nn.functional as F
import PIL.Image
import numpy as np
mean = torch.Tensor([0.485, 0.456, 0.406]).cuda()
std = torch.Tensor([0.229, 0.224, 0.225]).cuda()
def preprocess_image(image):
image = PIL.Image.fromarray(image)
image = transforms.functional.to_tensor(image).cuda()
image.sub_(mean[:, None, None]).div_(std[:, None, None])
return image[None, ...]
def center_crop_square(frame):
src_height, src_width, _ = frame.shape
src_aspect_ratio = src_width/src_height
vertical_padding = 0
horizontal_padding = 0
if src_aspect_ratio > 1.0:
square_size = src_height
horizontal_padding = int((src_width-square_size)/2)
else:
square_size = src_width
vertical_padding = int((src_height-square_size)/2)
cropped = frame[vertical_padding:vertical_padding+square_size,
horizontal_padding:horizontal_padding+square_size]
return cropped