-
Notifications
You must be signed in to change notification settings - Fork 94
/
Copy pathencoding.py
89 lines (65 loc) · 3.47 KB
/
encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
import torch.nn as nn
import torch.nn.functional as F
class FreqEncoder_torch(nn.Module):
def __init__(self, input_dim, max_freq_log2, N_freqs,
log_sampling=True, include_input=True,
periodic_fns=(torch.sin, torch.cos)):
super().__init__()
self.input_dim = input_dim
self.include_input = include_input
self.periodic_fns = periodic_fns
self.N_freqs = N_freqs
self.output_dim = 0
if self.include_input:
self.output_dim += self.input_dim
self.output_dim += self.input_dim * N_freqs * len(self.periodic_fns)
if log_sampling:
self.freq_bands = 2 ** torch.linspace(0, max_freq_log2, N_freqs)
else:
self.freq_bands = torch.linspace(2 ** 0, 2 ** max_freq_log2, N_freqs)
self.freq_bands = self.freq_bands.numpy().tolist()
def forward(self, input, max_level=None, **kwargs):
if max_level is None:
max_level = self.N_freqs
else:
max_level = int(max_level * self.N_freqs)
out = []
if self.include_input:
out.append(input)
for i in range(max_level):
freq = self.freq_bands[i]
for p_fn in self.periodic_fns:
out.append(p_fn(input * freq))
# append 0
if self.N_freqs - max_level > 0:
out.append(torch.zeros(input.shape[0], (self.N_freqs - max_level) * 2 * input.shape[1], device=input.device, dtype=input.dtype))
out = torch.cat(out, dim=-1)
return out
def get_encoder(encoding, input_dim=3,
multires=6,
degree=4,
num_levels=16, level_dim=2, base_resolution=16, log2_hashmap_size=19, desired_resolution=2048, align_corners=False, interpolation='linear',
**kwargs):
if encoding == 'None':
return lambda x, **kwargs: x, input_dim
elif encoding == 'frequency_torch':
encoder = FreqEncoder_torch(input_dim=input_dim, max_freq_log2=multires-1, N_freqs=multires, log_sampling=True)
elif encoding == 'frequency': # CUDA implementation, faster than torch.
from freqencoder import FreqEncoder
encoder = FreqEncoder(input_dim=input_dim, degree=multires)
elif encoding == 'sphere_harmonics':
from shencoder import SHEncoder
encoder = SHEncoder(input_dim=input_dim, degree=degree)
elif encoding == 'hashgrid':
from gridencoder import GridEncoder
encoder = GridEncoder(input_dim=input_dim, num_levels=num_levels, level_dim=level_dim, base_resolution=base_resolution, log2_hashmap_size=log2_hashmap_size, desired_resolution=desired_resolution, gridtype='hash', align_corners=align_corners, interpolation=interpolation)
elif encoding == 'tiledgrid':
from gridencoder import GridEncoder
encoder = GridEncoder(input_dim=input_dim, num_levels=num_levels, level_dim=level_dim, base_resolution=base_resolution, log2_hashmap_size=log2_hashmap_size, desired_resolution=desired_resolution, gridtype='tiled', align_corners=align_corners, interpolation=interpolation)
elif encoding == 'hashgrid_taichi':
from taichi_modules.hash_encoder import HashEncoderTaichi
encoder = HashEncoderTaichi(batch_size=4096) #TODO: hard encoded batch size
else:
raise NotImplementedError('Unknown encoding mode, choose from [None, frequency, sphere_harmonics, hashgrid, tiledgrid]')
return encoder, encoder.output_dim