-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.cpp
79 lines (63 loc) · 2.67 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
#include <iostream>
#include <cstdlib>
#include <ctime>
#include "KalmanFilter3D.h"
// Function to generate random noise
double generateNoise(double stddev) {
double u = ((double)rand() / (RAND_MAX)) * 2 - 1;
double v = ((double)rand() / (RAND_MAX)) * 2 - 1;
double w = ((double)rand() / (RAND_MAX));
double c = std::sqrt(-2 * std::log(w)) / std::sqrt(u * u + v * v);
return stddev * u * c;
}
// Function to simulate the true position of the ball
void simulateTruePosition(double& x, double& y, double& z, double vx, double vy, double vz, double dt) {
x += vx * dt;
y += vy * dt;
z += vz * dt;
}
// Function to simulate noisy measurements
void simulateMeasurement(double& x, double& y, double& z, double stddev) {
x += generateNoise(stddev);
y += generateNoise(stddev);
z += generateNoise(stddev);
}
int main() {
srand(time(0)); // Seed the random number generator
// Time step
double dt = 0.1;
// Process noise standard deviation
double process_noise_std = 0.1;
// Measurement noise standard deviation
double measurement_noise_std = 0.5;
// Initialize the Kalman filter
KalmanFilter3D kf(dt, process_noise_std, measurement_noise_std);
// Initial true position and velocity of the ball
double true_x = 0, true_y = 0, true_z = 0;
double true_vx = 1, true_vy = 0.5, true_vz = 0.2;
// Simulate and track the ball for 100 time steps
for (int i = 0; i < 100; ++i) {
// Simulate the true position of the ball
simulateTruePosition(true_x, true_y, true_z, true_vx, true_vy, true_vz, dt);
// Simulate noisy measurements
double measured_x = true_x;
double measured_y = true_y;
double measured_z = true_z;
simulateMeasurement(measured_x, measured_y, measured_z, measurement_noise_std);
// Predict the position using the Kalman filter
kf.predict();
// Update the Kalman filter with the measured position
double z[3] = { measured_x, measured_y, measured_z };
kf.update(z);
// Get the estimated position from the Kalman filter
double estimated_state[6];
kf.getState(estimated_state);
// Print the true position, measured position, and estimated position
std::cout << "Time step " << i << ":\n";
std::cout << "True position: (" << true_x << ", " << true_y << ", " << true_z << ")\n";
std::cout << "Measured position: (" << measured_x << ", " << measured_y << ", " << measured_z << ")\n";
std::cout << "Estimated position: (" << estimated_state[0] << ", " << estimated_state[1] << ", " << estimated_state[2] << ")\n";
std::cout << "----------\n";
}
return 0;
}