-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautoencoder.py
192 lines (142 loc) · 6.41 KB
/
autoencoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
from ast import arg
import torch
import os
import numpy as np
from torch.utils.data import Dataset,DataLoader
import argparse
from models.resnet import *
from models.autoencoder import *
from glob import glob
import pandas as pd
from tqdm import tqdm
import json
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
from torchvision import models,datasets, transforms
import matplotlib.pyplot as plt
import time
from utils import *
from PIL import Image
from torchsummary import summary
from tqdm import tqdm, trange
from torch.optim.lr_scheduler import StepLR
from random import shuffle
# Step 1: Initialize model
parser = argparse.ArgumentParser(description='')
# 1279
# "cuda:0" if torch.cuda.is_available() else
parser.add_argument('--epochs', dest='epochs', type=int, default=240, help='# of epoch')
parser.add_argument('--num_classes', dest='num_classes', type=int, default=1, help='# of epoch')
parser.add_argument('--device', dest='device', type=str, default=torch.device("cuda:1" if torch.cuda.is_available() else "cpu"), help='device')
parser.add_argument('--lr', dest='lr', type=float, default=0.0001, help='lr')
parser.add_argument('--weight_decay', dest='weight_decay', type=float, default=0.1, help='lr')
parser.add_argument('--model_name', dest='model_name', type=str, default="autoencoder_", help='')
parser.add_argument('--optim_name', dest='optim_name', type=str, default="adam", help='')
parser.add_argument('--loss_name', dest='loss_name', type=str, default="mse", help='')
parser.add_argument('--train_dir', dest='train_dir', type=str, default="/home/infres/ext-6343/venv_ml_art/ml-art/dataset/resnet/train", help='')
parser.add_argument('--test_dir', dest='test_dir', type=str, default="/home/infres/ext-6343/venv_ml_art/ml-art/dataset/resnet/test", help='')
parser.add_argument('--data_dir', dest='data_dir', type=str, default="/home/infres/ext-6343/venv_ml_art/ml-art/data", help='')
parser.add_argument('--save_dir', dest='save_dir', type=str, default="/home/infres/ext-6343/venv_ml_art/ml-art/saved_results", help='')
args = parser.parse_args()
destination_folder=args.save_dir+"/"+args.model_name+"_pretrained_"+str(args.epochs)+"_"+args.loss_name+"_"+args.optim_name+"_"+str(args.lr)
destination_folder_plots=destination_folder+"/plots"
destination_folder_saved=destination_folder+"/saved_model"
dest = os.path.exists(destination_folder)
plots=os.path.exists(destination_folder_plots)
saved=os.path.exists(destination_folder_saved)
os.environ["CUDA_VISIBLE_DEVICES"] ="1,2"
if not dest:
# Create a new directory because it does not exist
os.makedirs(destination_folder)
if not plots:
# Create a new directory because it does not exist
os.makedirs(destination_folder_plots)
if not saved:
# Create a new directory because it does not exist
os.makedirs(destination_folder_saved)
json_path=destination_folder_saved+"/results.json"
print("\n____________________________________________________\n")
print("\nLoading Dataset into DataLoader...")
print("** PID : ",os.getpid())
print("** DEVICE : ",args.device)
# Get All Images
western = glob(args.data_dir+"/western/" + '*')
non_western = glob(args.data_dir+"/non_western/" + '*')
all_imgs = western + non_western
shuffle(all_imgs)
train_imgs = all_imgs[:15769]
validation_imgs = all_imgs[15769:]
# train_imgs = all_imgs[:1200]
# validation_imgs = all_imgs[1200:1400]
# test_imgs = all_imgs[17740:]
# DataLoader Function
class Dataset(torch.utils.data.Dataset):
def __init__(self, images, transform):
super().__init__()
self.paths = images
self.len = len(self.paths)
self.transform = transform
def __len__(self):
return self.len
def __getitem__(self, index):
path = self.paths[index]
image = Image.open(path).convert('RGB')
image = self.transform(image)
# if image.shape==(3, 256,256):
return image
transform = transforms.Compose([
transforms.Resize((256,256)),
# transforms.CenterCrop(224),
transforms.ToTensor()])
# Apply Transformations to Data
trainDataLoader = torch.utils.data.DataLoader(Dataset(train_imgs, transform),shuffle=True, batch_size= 32,drop_last=True)
valDataLoader = torch.utils.data.DataLoader(Dataset(validation_imgs, transform), batch_size= 8,drop_last=True)
# testDataLoader = torch.utils.data.DataLoader(Dataset(test_imgs, transform), batch_size= 8)
model=AE(base_channel_size=64,latent_dim=4096)
model.to(args.device)
loss_function = torch.nn.MSELoss().to(args.device)
# optimizer = torch.optim.SGD(model.parameters(), lr=args.lr, momentum=0.1)
optimizer = torch.optim.Adam(model.parameters(), lr= args.lr)
def train_(trainDataLoader):
train_loss = 0
model.train()
for inputs in trainDataLoader:
inputs = inputs.to(args.device)
optimizer.zero_grad()
reconstructed = model.forward(inputs)
loss = loss_function(reconstructed, inputs)
loss.backward()
optimizer.step()
train_loss += loss.item()
return train_loss
def test_(valDataLoader):
test_loss= 0
model.eval()
with torch.no_grad():
for inputs in valDataLoader:
inputs = inputs.to(args.device)
reconstructed = model.forward(inputs)
batch_loss = loss_function(reconstructed, inputs)
test_loss += batch_loss.item()
return test_loss
if __name__ == '__main__':
saved_values={}
keys = ["Train_Errors","Validation_Errors"]
# saved_values={key: np.zeros((args.epochs)) for key in keys}
train_losses, test_losses = [], []
train_accuracy,test_accuracy=[], []
print("********* START TRAINING *********\n")
# for _ in trange(args.epochs, desc="Epoch"):
for epoch in tqdm(range(args.epochs)):
train_loss=train_(trainDataLoader)
val_loss=test_(valDataLoader)
train_losses.append(train_loss/len(trainDataLoader))
test_losses.append(val_loss/len(valDataLoader))
print(f"Epoch {epoch+1}/{args.epochs}.. "
f"Train loss: {train_loss/len(trainDataLoader):.3f}.. "
f"Test loss: {val_loss/len(valDataLoader):.3f}.. "
)
# save th eresults and plot the learning curve
save_results_ae(saved_values,json_path,train_losses,test_losses)
plot_curve(train_losses,test_losses,destination_folder_plots+"/loss.png","loss")
save_model(model,destination_folder_saved+"/model.pth")