-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathode_pp.m
86 lines (71 loc) · 2.41 KB
/
ode_pp.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
function T = ode_pp
%ODE_PP Performance profile of three ODE solvers.
solvers = {@ode23, @ode45, @ode113}; nsolvers = length(solvers);
nproblems = 6;
nruns = 5; % Number of times to run solver to get more reliable timing.
for j = 1:nsolvers
code = solvers{j}
for i = 1:nproblems
options = [];
switch i
case 1
fun = @fox1; tspan = [0 10]; yzero = [3;0];
case 2
fun = @rossler; tspan = [0 100]; yzero = [1;1;1];
options = odeset('AbsTol',1e-7,'RelTol',1e-4);
case 3
fun = @fvdpol; tspan = [0 20]; yzero = [2;1]; mu = 10;
case 4
fun = @fvdpol; tspan = [0 20]; yzero = [2;1]; mu = 1000;
case 5
fun = @drug_transport; tspan = [0 6]; yzero = [0;0];
case 6
fun = @knee; tspan = [0 2]; yzero = 1;
end
t0 = clock;
for k = 1:nruns
[t,y] = code(fun,tspan,yzero,options);
end
T(i,j) = etime(clock,t0)/nruns;
end
end
[~,h] = perfprof(T);
ylim([0 1.05]), grid
yvals = 0:1/nproblems:1;
ax = gca;
ax.YTick = yvals;
ax.YAxis.TickLabelFormat = '%4.2f '
ax.YTickLabel{1} = '0 '; ax.YTickLabel{end} = '1 ';
ax.FontSize = 12;
legend('ode23','ode45','ode113','Location','SE')
set(h,{'Marker'},{'*','s','o'}') % Vectorized set.
set(h,'MarkerSize',8)
set(h,'MarkerFaceColor','auto') % Make marker interiors non-transparent.
set(h,{'LineStyle'},{'-','-','-'}') % Vectorized set.
set(h,'LineWidth',2)
function yprime = fvdpol(x,y)
%FVDPOL Van der Pol equation written as first order system.
% Parameter MU.
yprime = [y(2); mu*y(2)*(1-y(1)^2)-y(1)];
end
end
function yprime = rossler(t,y)
%ROSSLER Rossler system, parameterized.
a = 0.2; b = 0.2; c = 2.5;
yprime = [-y(2)-y(3); y(1)+a*y(2); b+y(3)*(y(1)-c)];
end
function yprime = drug_transport(t,y)
%DRUG_TRANSPORT Two-compartment pharmacokinetics example.
% Reference: Shampine (1994, p. 105).
yprime = [-5.6*y(1) + 48*pulse(t,1/48,0.5); 5.6*y(1) - 0.7*y(2)];
function pls = pulse(t,w,p)
%PULSE Pulse of height 1, width W, period P.
pls = (rem(t,p) <= w);
end
end
function yprime = knee(t,y)
%KNEE Knee problem.
% Reference: Shampine (1994, p. 115).
epsilon = 1e-4;
yprime = (1/epsilon)*((1-t)*y - y^2);
end