-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathekf_cstr.py
67 lines (54 loc) · 1.69 KB
/
ekf_cstr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
#
# HILO-MPC is developed by Johannes Pohlodek and Bruno Morabito under the supervision of Prof. Rolf Findeisen
# at the Control and cyber-physical systems laboratory, TU Darmstadt (https://www.ccps.tu-darmstadt.de/ccp) and at the
# Laboratory for Systems Theory and Control, Otto von Guericke University (http://ifatwww.et.uni-magdeburg.de/syst/).
#
import numpy as np
from hilo_mpc import EKF, set_plot_backend
from hilo_mpc.library import cstr_schaffner_and_zeitz
# Load CSTR model
set_plot_backend('bokeh')
model = cstr_schaffner_and_zeitz()
# Set up model
model.setup(dt=.1)
# Initialize Kalman filter
ekf = EKF(model)
# Set up Kalman filter
ekf.setup()
# Constants
const = {
'a_1': .2674,
'a_2': 1.815,
'b_1': 1.05e14,
'b_2': 4.92e13,
'g': 1.5476,
'E': 34.2583
}
# Initial conditions of the model
model.set_initial_conditions([.5, 0.])
model.set_initial_parameter_values(const)
# Initial guess for the Kalman filter
ekf.R = 1e-4
ekf.set_initial_guess([0., 0.], P0=[.25, .25])
ekf.set_initial_parameter_values(const)
# Seed for noise
np.random.seed(0)
# Run simulations
for _ in range(200):
model.simulate(u=-.002)
# Get noisy measurement and calculate estimates
yk = model.solution.make_some_noise('y:f', var={'y': 1e-4})
ekf.estimate(y=yk, u=-.002)
# Plots
model.solution.plot(
('t', 'x_1'),
('t', 'x_2'),
('t', 'y', 'y_noisy'),
data=ekf.solution,
data_suffix='pred',
data_skip=2,
title=("conversion of chemical reaction", "scaled reactor temperature", "measured temperature"),
interactive=True,
output_file='ekf_cstr/actual_vs_predicted.html'
)
ekf.solution.plot(('t', 'P_0', 'P_3'), output_file='ekf_cstr/error_variance.html')