-
Notifications
You must be signed in to change notification settings - Fork 195
/
Copy patheval.py
257 lines (214 loc) · 9.91 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
from os import path
from argparse import ArgumentParser
import shutil
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
from PIL import Image
from inference.data.test_datasets import LongTestDataset, DAVISTestDataset, YouTubeVOSTestDataset
from inference.data.mask_mapper import MaskMapper
from model.network import XMem
from inference.inference_core import InferenceCore
from progressbar import progressbar
try:
import hickle as hkl
except ImportError:
print('Failed to import hickle. Fine if not using multi-scale testing.')
"""
Arguments loading
"""
parser = ArgumentParser()
parser.add_argument('--model', default='./saves/XMem.pth')
# Data options
parser.add_argument('--d16_path', default='../DAVIS/2016')
parser.add_argument('--d17_path', default='../DAVIS/2017')
parser.add_argument('--y18_path', default='../YouTube2018')
parser.add_argument('--y19_path', default='../YouTube')
parser.add_argument('--lv_path', default='../long_video_set')
# For generic (G) evaluation, point to a folder that contains "JPEGImages" and "Annotations"
parser.add_argument('--generic_path')
parser.add_argument('--dataset', help='D16/D17/Y18/Y19/LV1/LV3/G', default='D17')
parser.add_argument('--split', help='val/test', default='val')
parser.add_argument('--output', default=None)
parser.add_argument('--save_all', action='store_true',
help='Save all frames. Useful only in YouTubeVOS/long-time video', )
parser.add_argument('--benchmark', action='store_true', help='enable to disable amp for FPS benchmarking')
# Long-term memory options
parser.add_argument('--disable_long_term', action='store_true')
parser.add_argument('--max_mid_term_frames', help='T_max in paper, decrease to save memory', type=int, default=10)
parser.add_argument('--min_mid_term_frames', help='T_min in paper, decrease to save memory', type=int, default=5)
parser.add_argument('--max_long_term_elements', help='LT_max in paper, increase if objects disappear for a long time',
type=int, default=10000)
parser.add_argument('--num_prototypes', help='P in paper', type=int, default=128)
parser.add_argument('--top_k', type=int, default=30)
parser.add_argument('--mem_every', help='r in paper. Increase to improve running speed.', type=int, default=5)
parser.add_argument('--deep_update_every', help='Leave -1 normally to synchronize with mem_every', type=int, default=-1)
# Multi-scale options
parser.add_argument('--save_scores', action='store_true')
parser.add_argument('--flip', action='store_true')
parser.add_argument('--size', default=480, type=int,
help='Resize the shorter side to this size. -1 to use original resolution. ')
args = parser.parse_args()
config = vars(args)
config['enable_long_term'] = not config['disable_long_term']
if args.output is None:
args.output = f'../output/{args.dataset}_{args.split}'
print(f'Output path not provided. Defaulting to {args.output}')
"""
Data preparation
"""
is_youtube = args.dataset.startswith('Y')
is_davis = args.dataset.startswith('D')
is_lv = args.dataset.startswith('LV')
if is_youtube or args.save_scores:
out_path = path.join(args.output, 'Annotations')
else:
out_path = args.output
if is_youtube:
if args.dataset == 'Y18':
yv_path = args.y18_path
elif args.dataset == 'Y19':
yv_path = args.y19_path
if args.split == 'val':
args.split = 'valid'
meta_dataset = YouTubeVOSTestDataset(data_root=yv_path, split='valid', size=args.size)
elif args.split == 'test':
meta_dataset = YouTubeVOSTestDataset(data_root=yv_path, split='test', size=args.size)
else:
raise NotImplementedError
elif is_davis:
if args.dataset == 'D16':
if args.split == 'val':
# Set up Dataset, a small hack to use the image set in the 2017 folder because the 2016 one is of a different format
meta_dataset = DAVISTestDataset(args.d16_path, imset='../../2017/trainval/ImageSets/2016/val.txt', size=args.size)
else:
raise NotImplementedError
palette = None
elif args.dataset == 'D17':
if args.split == 'val':
meta_dataset = DAVISTestDataset(path.join(args.d17_path, 'trainval'), imset='2017/val.txt', size=args.size)
elif args.split == 'test':
meta_dataset = DAVISTestDataset(path.join(args.d17_path, 'test-dev'), imset='2017/test-dev.txt', size=args.size)
else:
raise NotImplementedError
elif is_lv:
if args.dataset == 'LV1':
meta_dataset = LongTestDataset(path.join(args.lv_path, 'long_video'))
elif args.dataset == 'LV3':
meta_dataset = LongTestDataset(path.join(args.lv_path, 'long_video_x3'))
else:
raise NotImplementedError
elif args.dataset == 'G':
meta_dataset = LongTestDataset(path.join(args.generic_path), size=args.size)
if not args.save_all:
args.save_all = True
print('save_all is forced to be true in generic evaluation mode.')
else:
raise NotImplementedError
torch.autograd.set_grad_enabled(False)
# Set up loader
meta_loader = meta_dataset.get_datasets()
# Load our checkpoint
network = XMem(config, args.model).cuda().eval()
if args.model is not None:
model_weights = torch.load(args.model)
network.load_weights(model_weights, init_as_zero_if_needed=True)
else:
print('No model loaded.')
total_process_time = 0
total_frames = 0
# Start eval
for vid_reader in progressbar(meta_loader, max_value=len(meta_dataset), redirect_stdout=True):
loader = DataLoader(vid_reader, batch_size=1, shuffle=False, num_workers=2)
vid_name = vid_reader.vid_name
vid_length = len(loader)
# no need to count usage for LT if the video is not that long anyway
config['enable_long_term_count_usage'] = (
config['enable_long_term'] and
(vid_length
/ (config['max_mid_term_frames']-config['min_mid_term_frames'])
* config['num_prototypes'])
>= config['max_long_term_elements']
)
mapper = MaskMapper()
processor = InferenceCore(network, config=config)
first_mask_loaded = False
for ti, data in enumerate(loader):
with torch.cuda.amp.autocast(enabled=not args.benchmark):
rgb = data['rgb'].cuda()[0]
msk = data.get('mask')
info = data['info']
frame = info['frame'][0]
shape = info['shape']
need_resize = info['need_resize'][0]
"""
For timing see https://discuss.pytorch.org/t/how-to-measure-time-in-pytorch/26964
Seems to be very similar in testing as my previous timing method
with two cuda sync + time.time() in STCN though
"""
start = torch.cuda.Event(enable_timing=True)
end = torch.cuda.Event(enable_timing=True)
start.record()
if not first_mask_loaded:
if msk is not None:
first_mask_loaded = True
else:
# no point to do anything without a mask
continue
if args.flip:
rgb = torch.flip(rgb, dims=[-1])
msk = torch.flip(msk, dims=[-1]) if msk is not None else None
# Map possibly non-continuous labels to continuous ones
if msk is not None:
msk, labels = mapper.convert_mask(msk[0].numpy())
msk = torch.Tensor(msk).cuda()
if need_resize:
msk = vid_reader.resize_mask(msk.unsqueeze(0))[0]
processor.set_all_labels(list(mapper.remappings.values()))
else:
labels = None
# Run the model on this frame
prob = processor.step(rgb, msk, labels, end=(ti==vid_length-1))
# Upsample to original size if needed
if need_resize:
prob = F.interpolate(prob.unsqueeze(1), shape, mode='bilinear', align_corners=False)[:,0]
end.record()
torch.cuda.synchronize()
total_process_time += (start.elapsed_time(end)/1000)
total_frames += 1
if args.flip:
prob = torch.flip(prob, dims=[-1])
# Probability mask -> index mask
out_mask = torch.max(prob, dim=0).indices
out_mask = (out_mask.detach().cpu().numpy()).astype(np.uint8)
if args.save_scores:
prob = (prob.detach().cpu().numpy()*255).astype(np.uint8)
# Save the mask
if args.save_all or info['save'][0]:
this_out_path = path.join(out_path, vid_name)
os.makedirs(this_out_path, exist_ok=True)
out_mask = mapper.remap_index_mask(out_mask)
out_img = Image.fromarray(out_mask)
if vid_reader.get_palette() is not None:
out_img.putpalette(vid_reader.get_palette())
out_img.save(os.path.join(this_out_path, frame[:-4]+'.png'))
if args.save_scores:
np_path = path.join(args.output, 'Scores', vid_name)
os.makedirs(np_path, exist_ok=True)
if ti==len(loader)-1:
hkl.dump(mapper.remappings, path.join(np_path, f'backward.hkl'), mode='w')
if args.save_all or info['save'][0]:
hkl.dump(prob, path.join(np_path, f'{frame[:-4]}.hkl'), mode='w', compression='lzf')
print(f'Total processing time: {total_process_time}')
print(f'Total processed frames: {total_frames}')
print(f'FPS: {total_frames / total_process_time}')
print(f'Max allocated memory (MB): {torch.cuda.max_memory_allocated() / (2**20)}')
if not args.save_scores:
if is_youtube:
print('Making zip for YouTubeVOS...')
shutil.make_archive(path.join(args.output, path.basename(args.output)), 'zip', args.output, 'Annotations')
elif is_davis and args.split == 'test':
print('Making zip for DAVIS test-dev...')
shutil.make_archive(args.output, 'zip', args.output)