-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
148 lines (120 loc) · 5.42 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import pandas as pd
import geopandas
import routingpy as rp
import contextily as cx
import matplotlib.pyplot as plt
# This line imports an API key from a .txt file in the same folder as the code that is being run
# You could instead hard-code the API key by running
# ors_api_key = "myapikey"
# replacing this with your actual key, but you should not commit this to version control like Github
with open("routingpy_api_key.txt", "r") as file:
ors_api_key = file.read().replace("\n", "")
ors_api = rp.ORS(api_key=ors_api_key)
lsoa_boundaries = geopandas.read_file("https://github.com/hsma-programme/h6_3c_interactive_plots_travel/raw/main/h6_3c_interactive_plots_travel/example_code/LSOA_2011_Boundaries_Super_Generalised_Clipped_BSC_EW_V4.geojson")
lsoa_centroids = pd.read_csv("https://github.com/hsma-programme/h6_3c_interactive_plots_travel/raw/main/h6_3c_interactive_plots_travel/example_code/england_lsoa_2011_centroids.csv")
# filter lsoa centroid file to just those with 'Brighton and Hove' in the name
brighton_lsoas_with_coords = lsoa_centroids[lsoa_centroids["name"].str.contains("Brighton and Hove")]
# Turn this into a geodataframe
brighton_lsoas_with_coords_gdf = geopandas.GeoDataFrame(
brighton_lsoas_with_coords,
geometry = geopandas.points_from_xy(
brighton_lsoas_with_coords['x'],
brighton_lsoas_with_coords['y']
),
crs = 'EPSG:27700' # as our current dataset is in BNG (northings/eastings)
)
# Convert to lat/long from northings/eastings
brighton_lsoas_with_coords_gdf = brighton_lsoas_with_coords_gdf.to_crs('EPSG:4326')
source_coord_pairs = list(zip(
brighton_lsoas_with_coords_gdf.geometry.x,
brighton_lsoas_with_coords_gdf.geometry.y
))
source_coord_pairs_list = [list(coord_tuple) for coord_tuple in source_coord_pairs]
# Define site locations
locations = [
[50.84510657697442, -0.19543939173180552],
[50.844345428338784, -0.13365357930540253],
[50.833469545267626, -0.10763304889918592],
[50.83075017843111, -0.17652193515449327],
[50.865971443211656, -0.11961372476967412],
[50.85758221272246, -0.17259077588448932]
]
# Swap site locations into order expected by ORS/routingpy service
locations_long_lat = [
[ x[1], x[0] ]
for x
in locations]
# Create empty list to store all source and destination coordinates
all_coordinates = []
# Put our sources (our LSOA centre points) into the list
all_coordinates.extend(source_coord_pairs_list)
# Put our destinations (our potential sites) into the list
all_coordinates.extend(locations_long_lat)
sources_indices = [i for i in range(len(source_coord_pairs_list))]
destinations_indices = [i for i in
range(
# first number in list of indices
# this will be 1 more than the number of sources (which were first in our
# full list of coordinates)
len(source_coord_pairs_list),
# last number in list of indices (remember the last number won't
# actually be included)
len(all_coordinates))
]
# Request the travel times
location_matrix = ors_api.matrix(
locations = all_coordinates, # remember this is sources first, then destinations
profile = 'driving-car',
sources = sources_indices,
destinations = destinations_indices,
metrics=["distance", "duration"]
)
# turn the output into a dataframe
brighton_travel_matrix = pd.DataFrame(
location_matrix.durations,
columns=[f"Site {i+1}" for i in range(len(destinations_indices))],
index=brighton_lsoas_with_coords.name
)
# calculate the shortest travel time
brighton_travel_matrix['shortest'] = brighton_travel_matrix.min(axis=1)
# join travel data to geometry data
nearest_site_travel_brighton_gdf = pd.merge(
left=lsoa_boundaries,
right=brighton_travel_matrix.reset_index(),
left_on = "LSOA11NM",
right_on = "name"
)
# create column with shortest travel time in minutes (converted from seconds)
nearest_site_travel_brighton_gdf["shortest_minutes"] = nearest_site_travel_brighton_gdf["shortest"] / 60
# create geodataframe of site locations for plotting
brighton_sites = geopandas.GeoDataFrame(
[f"Site {i+1}" for i in range(len(destinations_indices))],
geometry = geopandas.points_from_xy(
[i[1] for i in locations],
[i[0] for i in locations]
),
crs = 'EPSG:4326' # as our current dataset is in BNG (northings/eastings)
)
# plot travel times as choropleth
ax = nearest_site_travel_brighton_gdf.plot(
"shortest_minutes",
legend=True,
cmap="Blues",
alpha=0.7,
edgecolor="black",
linewidth=0.5,
figsize=(12,6)
)
# plot potential hospitals/sites as point layer
hospital_points = (brighton_sites.to_crs('EPSG:27700')).plot(ax=ax, color='magenta', markersize=60)
# add basemap
cx.add_basemap(ax, crs=nearest_site_travel_brighton_gdf.crs.to_string(), zoom=14)
# Add site labels
for x, y, label in zip(brighton_sites.to_crs('EPSG:27700').geometry.x,
brighton_sites.to_crs('EPSG:27700').geometry.y,
brighton_sites.to_crs('EPSG:27700')[0]):
ax.annotate(label, xy=(x,y), xytext=(10,3), textcoords="offset points", bbox=dict(facecolor='white'))
# Turn off axis coordinate markings
ax = ax.axis('off')
# Add title to whole plot
plt.title("Travel Time (minutes - driving) to nearest proposed site in Brighton")