-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmds.cpp
345 lines (267 loc) · 7.81 KB
/
mds.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
//////////////////////////////////////////////////////////////////
// //
// PLINK (c) 2005-2009 Shaun Purcell //
// //
// This file is distributed under the GNU General Public //
// License, Version 2. Please see the file COPYING for more //
// details //
// //
//////////////////////////////////////////////////////////////////
#include <iostream>
#include <iomanip>
#include <fstream>
#include <cmath>
#include "plink.h"
#include "options.h"
#include "helper.h"
#include "stats.h"
#ifdef WITH_LAPACK
#include "lapackf.h"
#endif
void Plink::generateMDS()
{
// Take this solution, (i)
// 1) Average clusters to generate points
// 2) Perform multidimensional scaling
// 3) Dump information into Haploview-friendly file for visualisation
string f = par::output_file_name + ".mds";
printLOG("Writing MDS solution to [ " + f + " ] \n");
if (par::mds_by_individual)
printLOG("MDS plot of individuals (not clusters)\n");
else
printLOG("MDS plot of clusters (not individuals)\n");
vector< vector<int> > cl;
// Re-Populate the cl cluster information list, if need be
if ( ! par::mds_by_individual )
{
set<int> clnum;
for (int i=0; i<n; i++)
{
if ( sample[i]->sol >= 0 )
clnum.insert( sample[i]->sol );
}
cl.resize( clnum.size() );
for (int i=0; i<n; i++)
{
if ( sample[i]->sol >= 0 )
cl[ sample[i]->sol ].push_back(i);
}
}
int nc;
if (par::mds_by_individual)
nc = n;
else
nc = cl.size();
// Now we have built the between-cluster distance matrix (which will
// typically be smaller than the between-individual matrix, we
// should be able to apply visualisation (note: for samples of under
// 5000 individuals, should be okay to apply standard per-individual
// clustering
// B = - 1/2 Z D^2 Z
//
// where Z = I - 1/n U
//
// I identity matrix (n x n)
// U is unit matix (n x n)
// A double-centered matrix B
// b_ij = -1/2 [ d^2_ij - d^2_.j - d^2_i. + d^2_.. ]
#ifdef WITH_LAPACK
// Full, symm matrix (1D format)
vector_t D(nc*nc,0);
for (int c1 = 0 ; c1 < nc ; c1++)
for (int c2 = c1 ; c2 < nc ; c2++)
{
if (c1==c2) D[ c1 + c2*nc ]=0;
else
{
if (par::mds_by_individual)
{
if (c1>c2)
D[c1 + c2*nc] = D[ c2 + c1*nc ] = (1-mdist[c1][c2]) * (1-mdist[c1][c2]);
else
D[c1 + c2*nc] = D[ c2 + c1*nc ] = (1-mdist[c2][c1]) * (1-mdist[c2][c1]);
}
else
{
// Average over all pairs between cluster
double avg = 0;
for (int i1=0; i1<cl[c1].size(); i1++)
for (int i2=0; i2<cl[c2].size(); i2++)
{
if ( cl[c1][i1] > cl[c2][i2] )
avg += 1-mdist[cl[c1][i1]][cl[c2][i2]];
else
avg += 1-mdist[cl[c2][i2]][cl[c1][i1]];
}
avg /= cl[c1].size() * cl[c2].size();
// Symmetric matrix of squared distances
D[c1 + c2*nc] = D[c2 + c1*nc] = avg * avg;
}
}
}
double mean = 0;
vector_t M(nc,0);
for (int c1 = 0 ; c1 < nc ; c1++)
{
for (int c2 = 0 ; c2 < nc ; c2++)
{
M[c1] += D[c1 + c2*nc];
}
M[c1] /= (double)nc;
mean += M[c1];
}
mean /= (double)nc;
// For each element for D, double center
for (int c1 = 0 ; c1 < nc ; c1++)
for (int c2 = c1 ; c2 < nc ; c2++)
D[c1 + c2*nc] = D[c2 + c1*nc] = - 0.5 * ( D[c1 + c2*nc] - M[c1] - M[c2] + mean );
// Calculate only required eigen-vectors
vector_t eigenvalue(nc);
matrix_t eigenvector;
sizeMatrix(eigenvector,nc,nc);
//svd_lapack(n,D,eigenvalue,eigenvector);
eigen_lapack(n,D,eigenvalue,eigenvector);
// cout << "EVAL = \n";
// display(eigenvalue);
// cout << "EVEC = \n";
// display(eigenvector);
#else
// Not using LAPACK
matrix_t D;
sizeMatrix(D,nc,nc);
for (int c1 = 0 ; c1 < nc ; c1++)
for (int c2 = c1 ; c2 < nc ; c2++)
{
if (c1==c2) D[c1][c2]=0;
else
{
if (par::mds_by_individual)
{
if (c1>c2)
D[c1][c2] = D[c2][c1] = (1-mdist[c1][c2]) * (1-mdist[c1][c2]);
else
D[c1][c2] = D[c2][c1] = (1-mdist[c2][c1]) * (1-mdist[c2][c1]);
}
else
{
// Average over all pairs between cluster
double avg = 0;
for (int i1=0; i1<cl[c1].size(); i1++)
for (int i2=0; i2<cl[c2].size(); i2++)
{
if ( cl[c1][i1] > cl[c2][i2] )
avg += 1-mdist[cl[c1][i1]][cl[c2][i2]];
else
avg += 1-mdist[cl[c2][i2]][cl[c1][i1]];
}
avg /= cl[c1].size() * cl[c2].size();
// Symmetric matrix of squared distances
D[c1][c2] = D[c2][c1] = avg * avg;
}
}
}
double mean = 0;
vector_t M(nc,0);
for (int c1 = 0 ; c1 < nc ; c1++)
{
for (int c2 = 0 ; c2 < nc ; c2++)
{
M[c1] += D[c1][c2];
}
M[c1] /= (double)nc;
mean += M[c1];
}
mean /= (double)nc;
// For each element for D, double center
for (int c1 = 0 ; c1 < nc ; c1++)
for (int c2 = c1 ; c2 < nc ; c2++)
D[c1][c2] = D[c2][c1] = - 0.5 * ( D[c1][c2] - M[c1] - M[c2] + mean );
vector_t eigenvalue(nc);
matrix_t eigenvector;
sizeMatrix(eigenvector,nc,nc);
// cout << "*---------\n";
// for (int i=0; i<nc; i++)
// {
// for (int j=0; j<nc; j++)
// cout << D[i][j] << " ";
// cout << "\n";
// }
// cout << "*---------\n";
bool flag = svd(D,eigenvalue,eigenvector);
// cout << "EVAL = \n";
// display(eigenvalue);
// cout << "EVEC = \n";
// display(eigenvector);
#endif
/////////////////////////////////////////////////////
// Done all SVD calculation, return to normal code
// Take the e largest eignevectors
map<double,int> emap;
for (int i=0; i<nc; i++)
emap.insert(make_pair( eigenvalue[i] , i ) );
map<double,int>::reverse_iterator e = emap.rbegin();
int inc = par::cluster_mds_dim;
vector<int> elist;
while ( e != emap.rend() && inc > 0 )
{
elist.push_back(e->second);
inc--;
e++;
}
if (par::cluster_mds_dim < 1)
par::cluster_mds_dim = 1;
if (par::cluster_mds_dim > nc)
par::cluster_mds_dim = nc;
if ( elist.size() != par::cluster_mds_dim )
{
error("Internal problem extracting MDS solution\n");
elist.resize(par::cluster_mds_dim);
}
// Sqrt(D)
for (int i=0; i<nc; i++)
eigenvalue[i] = eigenvalue[i] >= 0 ? sqrt(eigenvalue[i]) : 0 ;
// Make solution
// EVEC * sqrt(EVAL) but filter on rows that are in solution
// with EVAL as diagonal matrix
matrix_t mds;
sizeMatrix(mds,nc,par::cluster_mds_dim);
for (int c1=0; c1<nc; c1++)
for (int c2=0; c2<par::cluster_mds_dim; c2++)
// ERROR: *** in 1.02 and below was *** for (int c3=0; c3<nc; c3++)
for (int c3=0; c3<par::cluster_mds_dim; c3++)
{
int i2 = elist[c2];
int i3 = elist[c3];
if ( i3 == i2 )
mds[c1][c2] += eigenvector[c1][i3] * eigenvalue[i2];
}
// Display solution
ofstream MDS(f.c_str(),ios::out);
MDS.precision(6);
MDS << setw(par::pp_maxfid) << "FID" << " "
<< setw(par::pp_maxiid) << "IID" << " "
<< setw(6) << "SOL" << " ";
for (int c=0; c<par::cluster_mds_dim; c++)
MDS << setw(12) << "C"+int2str(c+1) << " ";
MDS << "\n";
for (int i=0; i<n; i++)
{
MDS << setw(par::pp_maxfid) << sample[i]->fid << " "
<< setw(par::pp_maxiid) << sample[i]->iid << " "
<< setw(6) << sample[i]->sol << " ";
for (int c=0; c<par::cluster_mds_dim; c++)
{
if ( par::mds_by_individual )
MDS << setw(12) << mds[i][c] << " ";
else
{
if ( sample[i]->sol >= 0 )
MDS << setw(12) << mds[ sample[i]->sol ][c] << " ";
else
MDS << setw(12) << "NA" << " ";
}
}
MDS << "\n";
}
MDS.close();
}