-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
138 lines (116 loc) · 5.43 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from feature_transfer import MultimodalStyleTransfer
from normalisedVGG import NormalisedVGG
from VGGdecoder import Decoder
from utils import download_file_from_google_drive
def calc_mean_std(features):
batch_size, c = features.size()[:2]
features_mean = features.reshape(batch_size, c, -1).mean(dim=2).reshape(batch_size, c, 1, 1)
features_std = features.reshape(batch_size, c, -1).std(dim=2).reshape(batch_size, c, 1, 1)
return features_mean, features_std
class VGGEncoder(nn.Module):
def __init__(self, pretrained_path=None):
super().__init__()
vgg = NormalisedVGG(pretrained_path=pretrained_path).net
self.block1 = vgg[: 4]
self.block2 = vgg[4: 11]
self.block3 = vgg[11: 18]
self.block4 = vgg[18: 31]
for p in self.parameters():
p.requires_grad = False
def forward(self, images, output_last_feature=True):
h1 = self.block1(images)
h2 = self.block2(h1)
h3 = self.block3(h2)
h4 = self.block4(h3)
if output_last_feature:
return h4
else:
return h1, h2, h3, h4
class Model(nn.Module):
def __init__(self,
n_cluster=3,
alpha=1,
device='cpu',
lam=0.1,
pre_train=False,
max_cycles=None):
super().__init__()
self.n_cluster = n_cluster
self.alpha = alpha
self.device = device
self.lam = lam
self.max_cycles = max_cycles
if pre_train:
if not os.path.exists('vgg_normalised_conv5_1.pth'):
download_file_from_google_drive('1IAOFF5rDkVei035228Qp35hcTnliyMol',
'vgg_normalised_conv5_1.pth')
if not os.path.exists('decoder_relu4_1.pth'):
download_file_from_google_drive('1kkoyNwRup9y5GT1mPbsZ_7WPQO9qB7ZZ',
'decoder_relu4_1.pth')
self.vgg_encoder = VGGEncoder('vgg_normalised_conv5_1.pth')
self.decoder = Decoder(4, 'decoder_relu4_1.pth')
else:
self.vgg_encoder = VGGEncoder()
self.decoder = Decoder(4)
self.multimodal_style_feature_transfer = MultimodalStyleTransfer(n_cluster,
alpha,
device,
lam,
max_cycles)
def generate(self,
content_images,
style_images,
n_cluster=None,
alpha=None,
device=None,
lam=None,
max_cycles=None):
n_cluster = self.n_cluster if n_cluster is None else n_cluster
alpha = self.alpha if alpha is None else alpha
device = self.device if device is None else device
lam = self.lam if lam is None else lam
max_cycles = self.max_cycles if max_cycles is None else max_cycles
multimodal_style_feature_transfer = MultimodalStyleTransfer(n_cluster,
alpha,
device,
lam,
max_cycles)
content_features = self.vgg_encoder(content_images, output_last_feature=True)
style_features = self.vgg_encoder(style_images, output_last_feature=True)
cs = []
for c, s in zip(content_features, style_features):
cs.append(multimodal_style_feature_transfer.transfer(c, s).unsqueeze(dim=0))
cs = torch.cat(cs, dim=0)
out = self.decoder(cs)
return out
@staticmethod
def calc_content_loss(out_features, content_features):
return F.mse_loss(out_features, content_features)
@staticmethod
def calc_style_loss(out_middle_features, style_middle_features):
loss = 0
for c, s in zip(out_middle_features, style_middle_features):
c_mean, c_std = calc_mean_std(c)
s_mean, s_std = calc_mean_std(s)
loss += F.mse_loss(c_mean, s_mean) + F.mse_loss(c_std, s_std)
return loss
def forward(self, content_images, style_images, gamma=1):
content_features = self.vgg_encoder(content_images, output_last_feature=True)
style_features = self.vgg_encoder(style_images, output_last_feature=True)
cs = []
for c, s in zip(content_features, style_features):
cs.append(self.multimodal_style_feature_transfer.transfer(c, s).unsqueeze(dim=0))
cs = torch.cat(cs, dim=0)
out = self.decoder(cs)
output_features = self.vgg_encoder(out, output_last_feature=True)
output_middle_features = self.vgg_encoder(out, output_last_feature=False)
style_middle_features = self.vgg_encoder(style_images, output_last_feature=False)
loss_c = self.calc_content_loss(output_features, content_features)
loss_s = self.calc_style_loss(output_middle_features, style_middle_features)
loss = loss_c + gamma * loss_s
# print('loss: ', loss_c.item(), gamma*loss_s.item())
return loss