-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmetrics.py
91 lines (81 loc) · 4.07 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import numpy as np
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.saving import register_keras_serializable
@register_keras_serializable(package="builtins")
def intersection_over_union(y_true, y_pred):
def f(y_true, y_pred):
intersection = (y_true * y_pred).sum()
union = y_true.sum() + y_pred.sum() - intersection
iou_score = (intersection + 1e-15) / (union + 1e-15)
iou_score = iou_score.astype(np.float32)
return iou_score
return tf.numpy_function(f, [y_true, y_pred], tf.float32)
smooth = 1e-15
@register_keras_serializable(package="builtins")
def dice_coefficient(y_true, y_pred):
y_true = tf.cast(y_true, tf.float32)
y_pred = tf.cast(y_pred, tf.float32)
y_true = tf.keras.layers.Flatten()(y_true)
y_pred = tf.keras.layers.Flatten()(y_pred)
intersection = tf.reduce_sum(y_true * y_pred)
return (2. * intersection + smooth) / (tf.reduce_sum(y_true) + tf.reduce_sum(y_pred) + smooth)
@register_keras_serializable(package="builtins")
def dice_loss(y_true, y_pred):
return 1.0 - dice_coefficient(y_true, y_pred)
@register_keras_serializable(package="builtins")
def binary_crossentropy_dice_loss(y_true, y_pred):
return dice_loss(y_true, y_pred) + tf.keras.losses.binary_crossentropy(y_true, y_pred)
@register_keras_serializable(package="builtins")
def weighted_f_score(y_true, y_pred, beta=2):
y_true = tf.cast(y_true, tf.float32)
y_pred = tf.cast(y_pred, tf.float32)
true_positive = tf.reduce_sum(y_true * y_pred)
false_positive = tf.reduce_sum((1 - y_true) * y_pred)
false_negative = tf.reduce_sum(y_true * (1 - y_pred))
precision = true_positive / (true_positive + false_positive + 1e-15)
recall = true_positive / (true_positive + false_negative + 1e-15)
f_score = (1 + beta**2) * precision * recall / ((beta**2 * precision) + recall + 1e-15)
return f_score
@register_keras_serializable(package="builtins")
def s_score(y_true, y_pred, alpha=0.5):
y_true = tf.cast(y_true, tf.float32)
y_pred = tf.cast(y_pred, tf.float32)
y_true = tf.keras.layers.Flatten()(y_true)
y_pred = tf.keras.layers.Flatten()(y_pred)
true_positive = tf.reduce_sum(y_true * y_pred)
false_positive = tf.reduce_sum((1 - y_true) * y_pred)
false_negative = tf.reduce_sum(y_true * (1 - y_pred))
s_object = true_positive / (true_positive + false_negative + 1e-15)
s_region = true_positive / (true_positive + false_positive + 1e-15)
return alpha * s_object + (1 - alpha) * s_region
@register_keras_serializable(package="builtins")
def e_score(y_true, y_pred):
y_true = tf.cast(y_true, tf.float32)
y_pred = tf.cast(y_pred, tf.float32)
y_true = tf.keras.layers.Flatten()(y_true)
y_pred = tf.keras.layers.Flatten()(y_pred)
true_positive = tf.reduce_sum(y_true * y_pred)
false_positive = tf.reduce_sum((1 - y_true) * y_pred)
false_negative = tf.reduce_sum(y_true * (1 - y_pred))
precision = true_positive / (true_positive + false_positive + 1e-15)
recall = true_positive / (true_positive + false_negative + 1e-15)
return 2 * precision * recall / (precision + recall + 1e-15)
@register_keras_serializable(package="builtins")
def max_e_score(y_true, y_pred):
y_true = tf.cast(y_true, tf.float32)
y_pred = tf.cast(y_pred, tf.float32)
y_true = tf.keras.layers.Flatten()(y_true)
y_pred = tf.keras.layers.Flatten()(y_pred)
true_positive = tf.reduce_sum(y_true * y_pred)
false_positive = tf.reduce_sum((1 - y_true) * y_pred)
false_negative = tf.reduce_sum(y_true * (1 - y_pred))
precision = true_positive / (true_positive + false_positive + 1e-15)
recall = true_positive / (true_positive + false_negative + 1e-15)
f_score = 2 * precision * recall / (precision + recall + 1e-15)
return tf.reduce_max(f_score)
@register_keras_serializable(package="builtins")
def mean_absolute_error(y_true, y_pred):
y_true = tf.cast(y_true, tf.float32)
y_pred = tf.cast(y_pred, tf.float32)
return tf.reduce_mean(tf.abs(y_pred - y_true))