-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathgradio_server.py
393 lines (336 loc) · 18.9 KB
/
gradio_server.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
#!python
# -*- coding: utf-8 -*-
# @author: Kun
import gradio as gr
import random
from sentence_transformers import SentenceTransformer
from human_simulator import Human
from prompts.service_init import get_init_prompt
from utils import get_init, parse_instructions
from global_config import lang_opt, llm_model_opt
if "openai" == llm_model_opt:
from recurrentgpt import RecurrentGPT as AIWriter
llm_model = None
llm_tokenizer = None
elif "vicuna" == llm_model_opt:
from recurrent_llm import RecurrentLLM as AIWriter
from models.vicuna_bin import load_model
llm_tokenizer, llm_model = load_model()
elif "chatglm" == llm_model_opt:
from recurrent_llm import RecurrentLLM as AIWriter
from models.chatglm_hf import load_model
llm_tokenizer, llm_model = load_model()
elif "baichuan" == llm_model_opt:
from recurrent_llm import RecurrentLLM as AIWriter
from models.baichuan_hf import load_model
llm_tokenizer, llm_model = load_model()
elif "aquila" == llm_model_opt:
from recurrent_llm import RecurrentLLM as AIWriter
from models.aquila_fa import load_model
# from models.aquila_hf import load_model
llm_tokenizer, llm_model = load_model()
elif "falcon" == llm_model_opt:
from recurrent_llm import RecurrentLLM
from models.falcon_hf import load_model
llm_tokenizer, llm_model = load_model()
else:
raise Exception("not supported llm model name: {}".format(llm_model_opt))
# from urllib.parse import quote_plus
# from pymongo import MongoClient
# uri = "mongodb://%s:%s@%s" % (quote_plus("xxx"),
# quote_plus("xxx"), "localhost")
# client = MongoClient(uri, maxPoolSize=None)
# db = client.recurrentGPT_db
# log = db.log
_CACHE = {}
# Build the semantic search model
embedder = SentenceTransformer('multi-qa-mpnet-base-cos-v1')
def init_prompt(novel_type, description):
if description == "":
description = ""
else:
description = " about " + description
return get_init_prompt(lang_opt, novel_type, description)
def init(novel_type, description, request: gr.Request):
if novel_type == "":
novel_type = "Science Fiction" if "en" == lang_opt else "科幻故事"
global _CACHE
cookie = request.headers['cookie']
cookie = cookie.split('; _gat_gtag')[0]
# prepare first init
init_paragraphs = get_init(text=init_prompt(
novel_type, description), model=llm_model, tokenizer=llm_tokenizer)
# print(init_paragraphs)
start_input_to_human = {
'output_paragraph': init_paragraphs['Paragraph 3'],
'input_paragraph': '\n\n'.join([init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2'], init_paragraphs['Paragraph 3']]),
'output_memory': init_paragraphs['Summary'],
"output_instruction": [init_paragraphs['Instruction 1'], init_paragraphs['Instruction 2'], init_paragraphs['Instruction 3']]
}
_CACHE[cookie] = {"start_input_to_human": start_input_to_human,
"init_paragraphs": init_paragraphs}
written_paras = f"""Title: {init_paragraphs['name']}
Outline: {init_paragraphs['Outline']}
Paragraphs:
{start_input_to_human['input_paragraph']}""" if "en" == lang_opt else f"""标题: {init_paragraphs['name']}
梗概: {init_paragraphs['Outline']}
段落:
{start_input_to_human['input_paragraph']}"""
long_memory = parse_instructions(
[init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2'], init_paragraphs['Paragraph 3']])
# short memory, long memory, current written paragraphs, 3 next instructions
return start_input_to_human['output_memory'], long_memory, written_paras, init_paragraphs['Instruction 1'], init_paragraphs['Instruction 2'], init_paragraphs['Instruction 3']
def step(short_memory, long_memory, instruction1, instruction2, instruction3, current_paras, request: gr.Request, ):
if current_paras == "":
return "", "", "", "", "", ""
global _CACHE
# print(list(_CACHE.keys()))
# print(request.headers.get('cookie'))
cookie = request.headers['cookie']
cookie = cookie.split('; _gat_gtag')[0]
cache = _CACHE[cookie]
if "writer" not in cache:
start_input_to_human = cache["start_input_to_human"]
start_input_to_human['output_instruction'] = [
instruction1, instruction2, instruction3]
init_paragraphs = cache["init_paragraphs"]
human = Human(input=start_input_to_human,
memory=None, embedder=embedder, model=llm_model, tokenizer=llm_tokenizer)
human.step()
start_short_memory = init_paragraphs['Summary']
writer_start_input = human.output
# Init writerGPT
writer = AIWriter(input=writer_start_input, short_memory=start_short_memory, long_memory=[
init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2'], init_paragraphs['Paragraph 3']], memory_index=None, embedder=embedder,
model=llm_model, tokenizer=llm_tokenizer)
cache["writer"] = writer
cache["human"] = human
writer.step()
else:
human = cache["human"]
writer = cache["writer"]
output = writer.output
output['output_memory'] = short_memory
# randomly select one instruction out of three
instruction_index = random.randint(0, 2)
output['output_instruction'] = [instruction1,
instruction2, instruction3][instruction_index]
human.input = output
human.step()
writer.input = human.output
writer.step()
long_memory = [[v] for v in writer.long_memory]
# short memory, long memory, current written paragraphs, 3 next instructions
return writer.output['output_memory'], long_memory, current_paras + '\n\n' + writer.output['input_paragraph'], human.output['output_instruction'], *writer.output['output_instruction']
def controled_step(short_memory, long_memory, selected_instruction, current_paras, request: gr.Request, ):
if current_paras == "":
return "", "", "", "", "", ""
global _CACHE
# print(list(_CACHE.keys()))
# print(request.headers.get('cookie'))
cookie = request.headers['cookie']
cookie = cookie.split('; _gat_gtag')[0]
cache = _CACHE[cookie]
if "writer" not in cache:
start_input_to_human = cache["start_input_to_human"]
start_input_to_human['output_instruction'] = selected_instruction
init_paragraphs = cache["init_paragraphs"]
human = Human(input=start_input_to_human,
memory=None, embedder=embedder, model=llm_model, tokenizer=llm_tokenizer)
human.step()
start_short_memory = init_paragraphs['Summary']
writer_start_input = human.output
# Init writerGPT
writer = AIWriter(input=writer_start_input, short_memory=start_short_memory, long_memory=[
init_paragraphs['Paragraph 1'], init_paragraphs['Paragraph 2'], init_paragraphs['Paragraph 3']], memory_index=None, embedder=embedder,
model=llm_model, tokenizer=llm_tokenizer)
cache["writer"] = writer
cache["human"] = human
writer.step()
else:
human = cache["human"]
writer = cache["writer"]
output = writer.output
output['output_memory'] = short_memory
output['output_instruction'] = selected_instruction
human.input = output
human.step()
writer.input = human.output
writer.step()
# short memory, long memory, current written paragraphs, 3 next instructions
return writer.output['output_memory'], parse_instructions(writer.long_memory), current_paras + '\n\n' + writer.output['input_paragraph'], *writer.output['output_instruction']
# SelectData is a subclass of EventData
def on_select(instruction1, instruction2, instruction3, evt: gr.SelectData):
selected_plan = int(evt.value.replace("Instruction ", "")
) if "en" == lang_opt else int(evt.value.replace("指令 ", ""))
selected_plan = [instruction1, instruction2, instruction3][selected_plan-1]
return selected_plan
def reload_model(choice):
pass
with gr.Blocks(title="RecurrentGPT", css="footer {visibility: hidden}", theme="default") as demo:
if "en" == lang_opt:
gr.Markdown(
"""
# Recurrent-LLM
Interactive Generation of (Arbitrarily) Long Texts with Human-in-the-Loop
""")
elif lang_opt in ["zh1", "zh2"]:
gr.Markdown(
"""
# Recurrent-LLM
可以根据题目和简介自动续写文章
也可以手动选择剧情走向进行续写
""")
with gr.Tab("Auto-Generation"):
with gr.Row():
with gr.Column():
with gr.Box():
with gr.Row():
with gr.Column(scale=1, min_width=200):
novel_type = gr.Textbox(
label="Novel Type", placeholder="e.g. science fiction") if "en" == lang_opt else gr.Textbox(
label="请输入文本", placeholder="可以自己填写或者从EXamples中选择一个填入")
with gr.Column(scale=2, min_width=400):
description = gr.Textbox(
label="Description") if "en" == lang_opt else gr.Textbox(label="剧情简介(非必选项)")
btn_init = gr.Button(
"Init Novel Generation", variant="primary") if "en" == lang_opt else gr.Button(
"点击开始运行", variant="primary")
if "en" == lang_opt:
gr.Examples(["Science Fiction", "Romance", "Mystery", "Fantasy",
"Historical", "Horror", "Thriller", "Western", "Young Adult", ], inputs=[novel_type])
elif lang_opt in ["zh1", "zh2"]:
gr.Examples(["科幻故事", "青春伤痛文学", "爱到死去活来", "搞笑",
"幽默", "鬼故事", "喜剧", "童话", "魔法世界", ], inputs=[novel_type])
else:
raise Exception(f"not supported language: {lang_opt}")
written_paras = gr.Textbox(
label="Written Paragraphs (editable)", max_lines=21, lines=21) if "en" == lang_opt else gr.Textbox(
label="文章内容", max_lines=21, lines=21)
with gr.Column():
with gr.Box():
if "en" == lang_opt:
gr.Markdown("### Memory Module\n")
elif lang_opt in ["zh1", "zh2"]:
gr.Markdown("### 剧情模型\n")
short_memory = gr.Textbox(
label="Short-Term Memory (editable)", max_lines=3, lines=3) if "en" == lang_opt else gr.Textbox(
label="短期记忆 (可编辑)", max_lines=3, lines=3)
long_memory = gr.Textbox(
label="Long-Term Memory (editable)", max_lines=6, lines=6) if "en" == lang_opt else gr.Textbox(
label="长期记忆 (可编辑)", max_lines=6, lines=6)
# long_memory = gr.Dataframe(
# # label="Long-Term Memory (editable)",
# headers=["Long-Term Memory (editable)"],
# datatype=["str"],
# row_count=3,
# max_rows=3,
# col_count=(1, "fixed"),
# type="array",
# )
with gr.Box():
if "en" == lang_opt:
gr.Markdown("### Instruction Module\n")
elif lang_opt in ["zh1", "zh2"]:
gr.Markdown("### 选项模型\n")
with gr.Row():
instruction1 = gr.Textbox(
label="Instruction 1 (editable)", max_lines=4, lines=4) if "en" == lang_opt else gr.Textbox(
label="指令1(可编辑)", max_lines=4, lines=4)
instruction2 = gr.Textbox(
label="Instruction 2 (editable)", max_lines=4, lines=4) if "en" == lang_opt else gr.Textbox(
label="指令2(可编辑)", max_lines=4, lines=4)
instruction3 = gr.Textbox(
label="Instruction 3 (editable)", max_lines=4, lines=4) if "en" == lang_opt else gr.Textbox(
label="指令3(可编辑)", max_lines=4, lines=4)
selected_plan = gr.Textbox(
label="Revised Instruction (from last step)", max_lines=2, lines=2) if "en" == lang_opt else gr.Textbox(
label="选项说明 (来自上一步)", max_lines=2, lines=2)
btn_step = gr.Button("Next Step", variant="primary") if "en" == lang_opt else gr.Button(
"下一步", variant="primary")
btn_init.click(init, inputs=[novel_type, description], outputs=[
short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
btn_step.click(step, inputs=[short_memory, long_memory, instruction1, instruction2, instruction3, written_paras], outputs=[
short_memory, long_memory, written_paras, selected_plan, instruction1, instruction2, instruction3])
with gr.Tab("Human-in-the-Loop"):
with gr.Row():
with gr.Column():
with gr.Box():
with gr.Row():
with gr.Column(scale=1, min_width=200):
novel_type = gr.Textbox(
label="Novel Type", placeholder="e.g. science fiction") if "en" == lang_opt else gr.Textbox(
label="请输入文本", placeholder="可以自己填写或者从EXamples中选择一个填入")
with gr.Column(scale=2, min_width=400):
description = gr.Textbox(
label="Description") if "en" == lang_opt else gr.Textbox(label="剧情简介(非必选项)")
btn_init = gr.Button(
"Init Novel Generation", variant="primary") if "en" == lang_opt else gr.Button(
"点击开始运行", variant="primary")
if "en" == lang_opt:
gr.Examples(["Science Fiction", "Romance", "Mystery", "Fantasy",
"Historical", "Horror", "Thriller", "Western", "Young Adult", ], inputs=[novel_type])
elif lang_opt in ["zh1", "zh2"]:
gr.Examples(["科幻小说", "爱情小说", "推理小说", "奇幻小说",
"玄幻小说", "恐怖", "悬疑", "惊悚", "武侠小说", ], inputs=[novel_type])
written_paras = gr.Textbox(
label="Written Paragraphs (editable)", max_lines=23, lines=23) if "en" == lang_opt else gr.Textbox(
label="文章内容 (可编辑)", max_lines=23, lines=23)
with gr.Column():
with gr.Box():
if "en" == lang_opt:
gr.Markdown("### Memory Module\n")
elif lang_opt in ["zh1", "zh2"]:
gr.Markdown("### 剧情模型\n")
short_memory = gr.Textbox(
label="Short-Term Memory (editable)", max_lines=3, lines=3) if "en" == lang_opt else gr.Textbox(
label="短期记忆 (可编辑)", max_lines=3, lines=3)
long_memory = gr.Textbox(
label="Long-Term Memory (editable)", max_lines=6, lines=6) if "en" == lang_opt else gr.Textbox(
label="长期记忆 (可编辑)", max_lines=6, lines=6)
with gr.Box():
if "en" == lang_opt:
gr.Markdown("### Instruction Module\n")
elif lang_opt in ["zh1", "zh2"]:
gr.Markdown("### 选项模型\n")
with gr.Row():
instruction1 = gr.Textbox(
label="Instruction 1", max_lines=3, lines=3, interactive=False) if "en" == lang_opt else gr.Textbox(
label="指令1", max_lines=3, lines=3, interactive=False)
instruction2 = gr.Textbox(
label="Instruction 2", max_lines=3, lines=3, interactive=False) if "en" == lang_opt else gr.Textbox(
label="指令2", max_lines=3, lines=3, interactive=False)
instruction3 = gr.Textbox(
label="Instruction 3", max_lines=3, lines=3, interactive=False) if "en" == lang_opt else gr.Textbox(
label="指令3", max_lines=3, lines=3, interactive=False)
with gr.Row():
with gr.Column(scale=1, min_width=100):
selected_plan = gr.Radio(
["Instruction 1", "Instruction 2", "Instruction 3"], label="Instruction Selection",) if "en" == lang_opt else gr.Radio(["指令 1", "指令 2", "指令 3"], label="指令 选择",)
# info="Select the instruction you want to revise and use for the next step generation.")
with gr.Column(scale=3, min_width=300):
selected_instruction = gr.Textbox(
label="Selected Instruction (editable)", max_lines=5, lines=5) if "en" == lang_opt else gr.Textbox(
label="在上一步骤中被选择的 (可编辑)", max_lines=5, lines=5)
btn_step = gr.Button("Next Step", variant="primary") if "en" == lang_opt else gr.Button(
"下一步", variant="primary")
btn_init.click(init, inputs=[novel_type, description], outputs=[
short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
btn_step.click(controled_step, inputs=[short_memory, long_memory, selected_instruction, written_paras], outputs=[
short_memory, long_memory, written_paras, instruction1, instruction2, instruction3])
selected_plan.select(on_select, inputs=[
instruction1, instruction2, instruction3], outputs=[selected_instruction])
with gr.Tab("Model-Config"):
model_opt_radio = gr.Radio(["OpenAI", "ChatGLM-6B", "Vicuna-7B"], value="OpenAI", label="model",
info="select language you preferred. Default is English.",
interactive=True
)
reload_button = gr.Button("Reload/重新加载")
reload_button.click(reload_model, show_progress=True,
inputs=[model_opt_radio],
outputs=[novel_type])
demo.queue(concurrency_count=1)
if __name__ == "__main__":
demo.launch(server_port=8005, share=True,
debug=True,
server_name="0.0.0.0", show_api=False)