-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel_performance.py
85 lines (64 loc) · 2.49 KB
/
model_performance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import torch
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
def compute_accuracy(model, device, dataloader, channels_format=None):
"""
Compute accuracy of the model on the specified dataset.
:param model: Model object.
:param device: Device (e.g. CPU, CUDA) that was used for training the model.
:param dataloader: Dataset for which accuracy needs to be computed.
:param channels_format: Format of input samples that the model object requires.
:return:
"""
model.eval()
num_correct = 0
num_samples = 0
with torch.no_grad():
for data, target in dataloader:
data = data.to(device)
target = target.to(device)
if channels_format == 'channels_first':
data = torch.unsqueeze(data, 2)
data = data.permute(0, 2, 1)
scores = model(data)
preds = scores > 0.5
num_correct += accuracy_score(target.to('cpu'),
preds.to('cpu'),
normalize=False)
num_samples += len(data)
model.train(True)
total_acc = num_correct / num_samples
print("Computed accuracy:", total_acc)
return total_acc
def plot_train_and_test_loss_per_epoch(model_id, train_losses, test_losses, filename):
"""
Plot train and test loss values per epoch for the specified model.
:param model_id: Identifier for model.
:param train_losses: Average train loss per epoch.
:param test_losses: Average test loss per epoch.
:param filename: Filename where plot will be saved.
"""
fig, ax = plt.subplots()
ax.plot(train_losses, label='Train Loss')
ax.plot(test_losses, label='Test Loss')
ax.set_title(f"Model: {model_id}")
ax.set_xlabel("Epoch")
ax.set_ylabel("Loss")
ax.legend()
plt.savefig(filename, dpi=500)
def plot_train_and_test_acc_per_epoch(model_id, train_accs, test_accs, filename):
"""
Plot train and test accuracies per epoch for the specified model.
:param model_id: Identifier for model.
:param train_accs: Train accuracy per epoch.
:param test_accs: Test accuracy per epoch.
:param filename: Filename where plot will be saved.
"""
fig, ax = plt.subplots()
ax.plot(train_accs, label='Train Acc')
ax.plot(test_accs, label='Test Acc')
ax.set_title(f"Model: {model_id}")
ax.set_xlabel("Epoch")
ax.set_ylabel("Acc")
ax.legend()
plt.savefig(filename, dpi=500)