-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmulti_gpu.py
66 lines (50 loc) · 2.53 KB
/
multi_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
# adapted from: https://github.com/kuza55/keras-extras
# with Keras 2.x fix: https://github.com/kuza55/keras-extras/pull/19
# and issue #23 (Model Saving/Checkpointing incompatibilities)
from keras.layers.merge import Concatenate
from keras.layers.core import Lambda
from keras.models import Model
import tensorflow as tf
def make_parallel(model, gpu_count):
def get_slice(data, idx, parts):
shape = tf.shape(data)
size = tf.concat([ shape[:1] // parts, shape[1:] ],axis=0)
stride = tf.concat([ shape[:1] // parts, shape[1:]*0 ],axis=0)
start = stride * idx
return tf.slice(data, start, size)
outputs_all = []
for i in range(len(model.outputs)):
outputs_all.append([])
#Place a copy of the model on each GPU, each getting a slice of the batch
for i in range(gpu_count):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i) as scope:
inputs = []
#Slice each input into a piece for processing on this GPU
for x in model.inputs:
input_shape = tuple(x.get_shape().as_list())[1:]
slice_n = Lambda(get_slice, output_shape=input_shape, arguments={'idx':i,'parts':gpu_count})(x)
inputs.append(slice_n)
outputs = model(inputs)
if not isinstance(outputs, list):
outputs = [outputs]
#Save all the outputs for merging back together later
for l in range(len(outputs)):
outputs_all[l].append(outputs[l])
# merge outputs on CPU
with tf.device('/cpu:0'):
merged = []
for outputs in outputs_all:
merged.append(Concatenate(axis=0)(outputs))
# update model saving scheme to save underlying model rather than parallel
new_model = Model(inputs=model.inputs, outputs=merged)
save_model_function = type(model.save)
def save_old_model(self_, model_path, overwrite=True):
model.save(model_path, overwrite)
new_model.save = save_model_function(save_old_model, new_model)
# update weight saving scheme to save underlying model weights
save_weights_function = type(model.save_weights)
def save_old_weights(self_, weights_path, overwrite=True):
model.save_weights(weights_path, overwrite)
new_model.save_weights = save_weights_function(save_old_weights, new_model)
return new_model