-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrun_classifier_bert.py
694 lines (580 loc) · 29.1 KB
/
run_classifier_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import csv
import os
import sys
sys.path.append('..')
import logging
import argparse
import random
from tqdm import tqdm, trange
from os import listdir
from os.path import isfile, join
import numpy as np
import torch
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
from torch.utils.data.distributed import DistributedSampler
from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME
import pytorch_pretrained_bert.tokenization as tokenization
from pytorch_pretrained_bert.modeling import BertForMultipleChoice_MT_general
from pytorch_pretrained_bert.optimization import BertAdam
import json
from utils_glue import (compute_metrics, processors, GLUE_TASKS_NUM_LABELS, MAX_SEQ_LENGTHS, output_modes)
reverse_order = False
sa_step = False
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text_a, text_b=None, label=None, text_c=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
text_b: (Optional) string. The untokenized text of the second sequence.
Only must be specified for sequence pair tasks.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text_a = text_a
self.text_b = text_b
self.text_c = text_c
self.label = label
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self, input_ids, input_mask, segment_ids, label_id):
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.label_id = label_id
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_tsv(cls, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, "r") as f:
reader = csv.reader(f, delimiter="\t", quotechar=quotechar)
lines = []
for line in reader:
lines.append(line)
return lines
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer, n_class, do_lower_case,
output_mode, is_multi_choice=True):
"""Loads a data file into a list of `InputBatch`s."""
print("#examples", len(examples))
label_map = {}
for (i, label) in enumerate(label_list):
label_map[label] = i
if is_multi_choice:
features = [[]]
else:
features = []
for (ex_index, example) in enumerate(examples):
if ex_index % 10000 == 0:
logger.info("Writing example %d of %d" % (ex_index, len(examples)))
tokens_a = tokenizer.tokenize(example.text_a.lower() if do_lower_case else example.text_a) # dialogues
tokens_b = None
tokens_c = None
if example.text_b:
tokens_b = tokenizer.tokenize(example.text_b.lower() if do_lower_case else example.text_b) # answers
if example.text_c:
tokens_c = tokenizer.tokenize(example.text_c.lower() if do_lower_case else example.text_c) # questions
if tokens_c:
_truncate_seq_tuple(tokens_a, tokens_b, tokens_c, max_seq_length - 4)
tokens_b = tokens_c + ["[SEP]"] + tokens_b
elif tokens_b:
_truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
tokens = ["[CLS]"] + tokens_a + ["[SEP]"]
segment_ids = (len(tokens_a) + 2) * [0]
if tokens_b:
tokens += tokens_b + ["[SEP]"]
segment_ids += [1] * (len(tokens_b) + 1)
input_ids = tokenizer.convert_tokens_to_ids(tokens)
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
input_mask = [1] * len(input_ids)
# Zero-pad up to the sequence length.
pad_length = max_seq_length - len(input_ids)
input_ids += [0] * pad_length
input_mask += [0] * pad_length
segment_ids += [0] * pad_length
assert len(input_ids) == max_seq_length
assert len(input_mask) == max_seq_length
assert len(segment_ids) == max_seq_length
if output_mode in ["classification", "multi-choice"]:
label_id = label_map[example.label]
elif output_mode == "regression":
label_id = float(example.label)
else:
raise KeyError(output_mode)
if is_multi_choice:
features[-1].append(
InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id))
if len(features[-1]) == n_class:
features.append([])
else:
features.append(
InputFeatures(
input_ids=input_ids,
input_mask=input_mask,
segment_ids=segment_ids,
label_id=label_id))
if is_multi_choice:
if len(features[-1]) == 0:
features = features[:-1]
print('#features', len(features))
return features
def _truncate_seq_pair(tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def _truncate_seq_tuple(tokens_a, tokens_b, tokens_c, max_length):
"""Truncates a sequence tuple in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b) + len(tokens_c)
if total_length <= max_length:
break
if len(tokens_a) >= len(tokens_b) and len(tokens_a) >= len(tokens_c):
tokens_a.pop()
elif len(tokens_b) >= len(tokens_a) and len(tokens_b) >= len(tokens_c):
tokens_b.pop()
else:
tokens_c.pop()
def accuracy(out, labels):
outputs = np.argmax(out, axis=1)
return np.sum(outputs == labels)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def train(args, train_datasets, model, tokenizer):
""" Train the model """
# if args.local_rank in [-1, 0]:
# tb_writer = SummaryWriter()
args.train_batch_size = [per_gpu_train_batch_size * max(1, args.n_gpu)
for per_gpu_train_batch_size in args.per_gpu_train_batch_size]
train_iters = []
tr_batches = []
for idx, train_dataset in enumerate(train_datasets):
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size[idx])
train_iters.append(InfiniteDataLoader(train_dataloader))
tr_batches.append(len(train_dataloader))
## set sampling proportion
total_n_tr_batches = sum(tr_batches)
sampling_prob = [float(n_batches) / total_n_tr_batches for n_batches in tr_batches]
t_total = total_n_tr_batches // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
max_grad_norm=args.max_grad_norm,
t_total=t_total)
# Train!
logger.info("***** Running training *****")
# logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %s", ','.join(map(str, args.per_gpu_train_batch_size)))
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size[0] * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
tr_loss, logging_loss = 0.0, 0.0
nb_tr_examples = 0
model.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0])
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for epoch, _ in enumerate(train_iterator):
epoch_iterator = tqdm(trange(total_n_tr_batches), desc="Iteration", disable=args.local_rank not in [-1, 0])
for step, _ in enumerate(epoch_iterator):
epoch_iterator.set_description("train loss: {}".format(tr_loss / nb_tr_examples if nb_tr_examples else tr_loss))
model.train()
# select task id
task_id = np.argmax(np.random.multinomial(1, sampling_prob))
batch = train_iters[task_id].get_next()
batch = tuple(t.to(args.device) for t in batch)
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2],
'labels': batch[3],
'task_id': task_id}
outputs = model(**inputs)
loss = outputs[0]
if args.n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu parallel training
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
loss.backward()
tr_loss += loss.item()
nb_tr_examples += inputs['input_ids'].size(0)
if (step + 1) % args.gradient_accumulation_steps == 0:
optimizer.step()
model.zero_grad()
global_step += 1
if args.do_epoch_checkpoint:
epoch_output_dir = os.path.join(args.output_dir, 'epoch_{}'.format(epoch))
os.makedirs(epoch_output_dir, exist_ok=True)
output_model_file = os.path.join(epoch_output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(epoch_output_dir, CONFIG_NAME)
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(epoch_output_dir)
evaluate(args, model, tokenizer, epoch=epoch, is_test=False)
evaluate(args, model, tokenizer, epoch=epoch, is_test=True)
return global_step, tr_loss / global_step
def evaluate(args, model, tokenizer, epoch=0, is_test=False):
# Loop to handle MNLI double evaluation (matched, mis-matched)
eval_task_names = args.task_name
eval_output_dir = args.output_dir
set_type = 'test' if is_test else 'dev'
results = {}
for task_id, eval_task in enumerate(eval_task_names):
if is_test and not hasattr(processors[eval_task], 'get_test_examples'):
continue
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, set_type)
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:
os.makedirs(eval_output_dir)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)
# Eval!
logger.info("***** Running evaluation for {} on {} for epoch {} *****".format(eval_task, set_type, epoch))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
eval_loss = 0.0
nb_eval_steps = 0
logits_all = None
out_label_ids = None
for batch in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
batch = tuple(t.to(args.device) for t in batch)
with torch.no_grad():
inputs = {'input_ids': batch[0],
'attention_mask': batch[1],
'token_type_ids': batch[2], # XLM don't use segment_ids
'labels': batch[3],
'task_id': task_id}
outputs = model(**inputs)
tmp_eval_loss, logits = outputs[:2]
# input_ids, input_mask, segment_ids, label_ids = batch
# tmp_eval_loss, logits = model(input_ids, segment_ids, input_mask, label_ids, task_id=task_id)
eval_loss += tmp_eval_loss.mean().item()
nb_eval_steps += 1
if logits_all is None:
logits_all = logits.detach().cpu().numpy()
out_label_ids = inputs['labels'].detach().cpu().numpy()
else:
logits_all = np.append(logits_all, logits.detach().cpu().numpy(), axis=0)
out_label_ids = np.append(out_label_ids, inputs['labels'].detach().cpu().numpy(), axis=0)
eval_loss = eval_loss / nb_eval_steps
output_mode = output_modes[eval_task]
if output_mode in ["classification", "multi-choice"]:
preds = np.argmax(logits_all, axis=1)
elif output_mode == "regression":
preds = np.squeeze(logits_all)
result = compute_metrics(eval_task, preds, out_label_ids.reshape(-1))
results.update(result)
output_eval_file = os.path.join(eval_output_dir, "eval_results_{}_{}.txt".format(eval_task, set_type))
with open(output_eval_file, "a") as writer:
logger.info("***** Eval results for {} on {} for epoch {} *****".format(eval_task, set_type, epoch))
writer.write("***** Eval results for epoch {} *****\n".format(epoch))
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
logger.info("\n")
# get error idx
correct_idx = np.argwhere(preds == out_label_ids).tolist()
wrong_idx = np.argwhere(preds != out_label_ids).tolist()
wrong_idx_dict = {'correct': correct_idx, 'wrong': wrong_idx,
'preds': preds.tolist(), 'logits': logits_all.tolist(),
'labels': out_label_ids.tolist()}
json.dump(wrong_idx_dict, open(os.path.join(eval_output_dir,
"error_idx_{}_{}.json".format(eval_task, set_type)), 'w'))
return results
def convert_features_to_tensors(features, output_mode, is_multi_choice=True):
input_ids = []
input_mask = []
segment_ids = []
label_id = []
if is_multi_choice:
n_class = len(features[0])
for f in features:
input_ids.append([])
input_mask.append([])
segment_ids.append([])
for i in range(n_class):
input_ids[-1].append(f[i].input_ids)
input_mask[-1].append(f[i].input_mask)
segment_ids[-1].append(f[i].segment_ids)
label_id.append([f[0].label_id])
else:
for f in features:
input_ids.append(f.input_ids)
input_mask.append(f.input_mask)
segment_ids.append(f.segment_ids)
label_id.append(f.label_id)
all_input_ids = torch.tensor(input_ids, dtype=torch.long)
all_input_mask = torch.tensor(input_mask, dtype=torch.long)
all_segment_ids = torch.tensor(segment_ids, dtype=torch.long)
if output_mode in ["classification", "multi-choice"]:
all_label_ids = torch.tensor(label_id, dtype=torch.long)
elif output_mode == "regression":
all_label_ids = torch.tensor(label_id, dtype=torch.float)
data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids)
return data
def load_and_cache_examples(args, task, tokenizer, set_type='train'):
processor = processors[task]()
output_mode = output_modes[task]
is_multi_choice = True if output_mode == 'multi-choice' else False
# Load data features from cache or dataset file
cached_features_file = os.path.join(args.data_dir[task], 'cached_{}_{}_{}_{}'.format(
set_type,
list(filter(None, args.bert_model.split('/'))).pop(),
str(MAX_SEQ_LENGTHS[task]),
str(task)))
if os.path.exists(cached_features_file):
logger.info("Loading features from cached file %s", cached_features_file)
features = torch.load(cached_features_file)
else:
logger.info("Creating features from dataset file at %s", args.data_dir[task])
label_list = processor.get_labels()
if set_type == 'train':
examples = processor.get_train_examples(args.data_dir[task])
elif set_type == 'dev':
examples = processor.get_dev_examples(args.data_dir[task])
else:
examples = processor.get_test_examples(args.data_dir[task])
features = convert_examples_to_features(examples, label_list, MAX_SEQ_LENGTHS[task],
tokenizer, len(label_list),
output_mode=output_mode,
do_lower_case=args.do_lower_case,
is_multi_choice=is_multi_choice)
if args.local_rank in [-1, 0]:
logger.info("Saving features into cached file %s", cached_features_file)
torch.save(features, cached_features_file)
# Convert to Tensors and build dataset
dataset = convert_features_to_tensors(features, output_mode, is_multi_choice=is_multi_choice)
return dataset
class InfiniteDataLoader:
def __init__(self, data_loader):
self.data_loader = data_loader
self.data_iter = iter(data_loader)
def get_next(self):
try:
data = next(self.data_iter)
except StopIteration:
# StopIteration is thrown if dataset ends
# reinitialize data loader
self.data_iter = iter(self.data_loader)
data = next(self.data_iter)
return data
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir for all tasks, separated by comma ',' ")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-base-multilingual, bert-base-chinese.")
parser.add_argument("--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model checkpoints will be written.")
## Other parameters
parser.add_argument("--do_lower_case",
default=False,
action='store_true',
help="Whether to lower case the input text. True for uncased models, False for cased models.")
# parser.add_argument("--max_seq_length",
# default='128',
# type=str,
# help="The maximum total input sequence length after WordPiece tokenization. \n"
# "Sequences longer than this will be truncated, and sequences shorter \n"
# "than this will be padded.")
parser.add_argument("--do_train",
default=False,
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
default=False,
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--per_gpu_train_batch_size", default='3', type=str,
help="Batch size per GPU/CPU for training.")
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int,
help="Batch size per GPU/CPU for evaluation.")
parser.add_argument("--learning_rate",
default=2e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--max_grad_norm", default=1.0, type=float,
help="Max gradient norm.")
parser.add_argument("--weight_decay",
default=0.01,
type=float,
help="l2 regularization.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--do_epoch_checkpoint",
default=False,
action='store_true',
help="Save checkpoint at every epoch")
parser.add_argument("--no_cuda",
default=False,
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumualte before performing a backward/update pass.")
args = parser.parse_args()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device %s n_gpu %d distributed training %r", device, n_gpu, bool(args.local_rank != -1))
args.n_gpu = n_gpu
args.device = device
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
if not args.do_train and not args.do_eval:
raise ValueError("At least one of `do_train` or `do_eval` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir):
if args.do_train:
print("Output directory ({}) already exists and is not empty.".format(args.output_dir))
else:
os.makedirs(args.output_dir, exist_ok=True)
set_seed(args)
## prepare tasks
args.task_name = args.task_name.lower().split(',')
args.per_gpu_train_batch_size = list(map(int, args.per_gpu_train_batch_size.split(',')))
for task_name in args.task_name:
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
args.data_dir = {task_name: data_dir_ for task_name, data_dir_ in zip(args.task_name, args.data_dir.split(','))}
num_labels = [GLUE_TASKS_NUM_LABELS[task_name] for task_name in args.task_name]
task_output_config = [(output_modes[task_name], num_label)
for task_name, num_label in zip(args.task_name, num_labels)]
# tokenizer = tokenization.FullTokenizer(
# vocab_file=args.vocab_file, do_lower_case=args.do_lower_case)
tokenizer = tokenization.BertTokenizer.from_pretrained(args.bert_model, do_lower_case=args.do_lower_case)
model = BertForMultipleChoice_MT_general.from_pretrained(args.bert_model, task_output_config=task_output_config)
model.to(device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],
output_device=args.local_rank)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
if args.do_train:
train_datasets = [load_and_cache_examples(args, task_name, tokenizer, set_type='train')
for task_name in args.task_name]
global_step, tr_loss = train(args, train_datasets, model, tokenizer)
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss)
# final save of model parameters
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
model_to_save = model.module if hasattr(model, 'module') else model # Only save the model it-self
torch.save(model_to_save.state_dict(), output_model_file)
model_to_save.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(args.output_dir)
if args.do_eval and not args.do_train:
if hasattr(model, 'module'):
model.module.load_state_dict(torch.load(os.path.join(args.output_dir, "pytorch_model.bin")))
else:
model.load_state_dict(torch.load(os.path.join(args.output_dir, "pytorch_model.bin")))
model.eval()
epoch = args.num_train_epochs
evaluate(args, model, tokenizer, epoch=epoch, is_test=False)
evaluate(args, model, tokenizer, epoch=epoch, is_test=True)
if __name__ == "__main__":
main()