forked from radarsimx/radarsimpy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathradar.py
1062 lines (904 loc) · 38.3 KB
/
radar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!python
# distutils: language = c++
# This script contains classes that define all the parameters for
# a radar system
# This script requires that 'numpy' be installed within the Python
# environment you are running this script in.
# This file can be imported as a module and contains the following
# class:
# * Transmitter - A class defines parameters of a radar transmitter
# * Receiver - A class defines parameters of a radar receiver
# * Radar - A class defines basic parameters of a radar system
# ----------
# RadarSimPy - A Radar Simulator Built with Python
# Copyright (C) 2018 - PRESENT Zhengyu Peng
# E-mail: zpeng.me@gmail.com
# Website: https://zpeng.me
# ` `
# -:. -#:
# -//:. -###:
# -////:. -#####:
# -/:.://:. -###++##:
# .. `://:- -###+. :##:
# `:/+####+. :##:
# .::::::::/+###. :##:
# .////-----+##: `:###:
# `-//:. :##: `:###/.
# `-//:. :##:`:###/.
# `-//:+######/.
# `-/+####/.
# `+##+.
# :##:
# :##:
# :##:
# :##:
# :##:
# .+:
import numpy as np
import scipy.constants as const
from scipy.interpolate import interp1d
from .util import cal_phase_noise
class Transmitter:
"""
A class defines basic parameters of a radar transmitter
:param f:
Waveform frequency (Hz).
If ``f`` is a single number, radar transmits a single-tone waveform.
For linear modulation, specify ``f`` with ``[f_start, f_stop]``.
``f`` can alse be a 1-D array of an arbitrary waveform, specify
the time with ``t``.
:type f: float or numpy.1darray
:param t:
Timing of each pulse (s).
:type t: float or numpy.1darray
:param float tx_power:
Transmitter power (dBm)
:param int pulses:
Total number of pulses
:param float prp:
Pulse repetition period (s). ``prp >=
pulse_length``. If it is ``None``, ``prp =
pulse_length``.
``prp`` can alse be a 1-D array to specify
different repetition period for each pulse. In this case, the
length of the 1-D array should equals to the length
of ``pulses``
:type repetitions_period: float or numpy.1darray
:param numpy.1darray f_offset:
Frequency offset for each pulse (Hz). The length must be the same
as ``pulses``.
:param numpy.1darray pn_f:
Frequency of the phase noise (Hz)
:param numpy.1darray pn_power:
Power of the phase noise (dB/Hz)
:param list[dict] channels:
Properties of transmitter channels
[{
- **location** (*numpy.1darray*) --
3D location of the channel [x, y, z] (m)
- **polarization** (*numpy.1darray*) --
Antenna polarization [x, y, z].
``default = [0, 0, 1] (vertical polarization)``
- **delay** (*float*) --
Transmit delay (s). ``default 0``
- **azimuth_angle** (*numpy.1darray*) --
Angles for azimuth pattern (deg). ``default [-90, 90]``
- **azimuth_pattern** (*numpy.1darray*) --
Azimuth pattern (dB). ``default [0, 0]``
- **elevation_angle** (*numpy.1darray*) --
Angles for elevation pattern (deg). ``default [-90, 90]``
- **elevation_pattern** (*numpy.1darray*) --
Elevation pattern (dB). ``default [0, 0]``
- **pulse_amp** (*numpy.1darray*) --
Relative amplitude sequence for pulse's amplitude modulation.
The array length should be the same as `pulses`. ``default 0``
- **pulse_phs** (*numpy.1darray*) --
Phase code sequence for pulse's phase modulation (deg).
The array length should be the same as `pulses`. ``default 0``
- **mod_t** (*numpy.1darray*) --
Time stamps for waveform modulation (s). ``default None``
- **phs** (*numpy.1darray*) --
Phase scheme for waveform modulation (deg). ``default None``
- **amp** (*numpy.1darray*) --
Relative amplitude scheme for waveform modulation. ``default None``
}]
:ivar numpy.1darray fc_vect:
Center frequency array for the pulses (Hz)
:ivar float fc_frame:
Center frequency of the whole frame (Hz)
:ivar float bandwidth:
Bandwith of each pulse (Hz), calculated from ``max(f) - min(f)``
:ivar float pulse_length:
Dwell time of each pulse (s), calculated from ``t[-1] - t[0]``
:ivar int channel_size:
Number of transmitter channels
:ivar numpy.2darray locations:
3D location of the channels. Size of the aray is
``[channel_size, 3 <x, y, z>]`` (m)
:ivar numpy.1darray delay:
Delay for each channel (s)
:ivar numpy.1darray polarization:
Antenna polarization ``[x, y, z]``.
- Horizontal polarization: ``[1, 0, 0]``
- Vertical polarization: ``[0, 0, 1]``
:ivar list[numpy.1darray] az_angles:
Angles for each channel's azimuth pattern (deg)
:ivar list[numpy.1darray] az_patterns:
Azimuth pattern for each channel (dB)
:ivar list[numpy.1darray] el_angles:
Angles for each channel's elevation pattern (deg)
:ivar list[numpy.1darray] el_patterns:
Elevation pattern for each channel (dB)
:ivar list az_func:
Azimuth patterns' interpolation functions
:ivar list el_func:
Elevation patterns' interpolation functions
:ivar numpy.1darray antenna_gains:
Antenna gain for each channel (dB).
Antenna gain is ``max(az_pattern)``
:ivar list[numpy.1darray] pulse_mod:
Complex modulation code sequence for phase modulation.
Lentgh of ``pulse_mod`` is the same as ``pulses``
:ivar list[dict] waveform_mod:
Waveform modulation properties for each channel.
{
``enabled`` (*bool*) -- Enable waveform modulation
``var`` (*numpy.1darray*) -- Variance of the modulation
``t`` (*numpy.1darray*) -- Time stamps for waveform modulation
}
:ivar numpy.1darray box_min:
Minimum location of the transmitter box (m)
:ivar numpy.1darray box_max:
Maximum location of the transmitter box (m)
**Waveform**
::
| prp
| +-----------+
|
| +---f[1]---> / / /
| / / /
| / / /
| / / /
| / / / ...
| / / /
| / / /
| / / /
| +---f[0]--->/ / /
|
| +-------+
| t[0] t[1]
|
| Pulse +--------------------------------------+
| modulation |pulse_amp[0]|pulse_amp[1]|pulse_amp[2]| ...
| |pulse_phs[0]|pulse_phs[1]|pulse_phs[2]| ...
| +--------------------------------------+
|
| Waveform +--------------------------------------+
| modulation | amp / phs / mod_t | ...
| +--------------------------------------+
"""
def __init__(self,
f,
t,
tx_power=0,
pulses=1,
prp=None,
f_offset=None,
pn_f=None,
pn_power=None,
channels=[dict(location=(0, 0, 0))]):
self.tx_power = tx_power
self.pulses = pulses
self.channels = channels
# get `f(t)`
# the lenght of `f` should be the same as `t`
if isinstance(f, (list, tuple, np.ndarray)):
self.f = np.array(f)
else:
self.f = np.array([f, f])
if isinstance(t, (list, tuple, np.ndarray)):
self.t = np.array(t)
self.t = self.t - self.t[0]
else:
self.t = np.array([0, t])
if len(self.f) != len(self.t):
raise ValueError(
'Lengths of `f` and `t` should be the same')
# frequency offset for each pulse
# the length of `f_offset` should be the same as `pulses`
if f_offset is not None:
if isinstance(f_offset, (list, tuple, np.ndarray)):
if len(f_offset) != pulses:
raise ValueError(
'Lengths of `f_offset` and `pulses` \
should be the same')
self.f_offset = np.array(f_offset)
else:
self.f_offset = f_offset+np.zeros(pulses)
else:
self.f_offset = np.zeros(pulses)
self.bandwidth = np.max(self.f) - np.min(self.f)
self.pulse_length = self.t[-1]-self.t[0]
# self.fc_0 = (np.min(self.f)+np.max(self.f))/2
self.fc_vect = (np.min(self.f)+np.max(self.f))/2+self.f_offset
self.fc_frame = (np.min(self.fc_vect)+np.max(self.fc_vect))/2
# phase noise
self.pn_f = pn_f
self.pn_power = pn_power
if self.pn_f is not None and self.pn_power is None:
raise ValueError(
'Lengths of `pn_f` and `pn_power` should be the same')
if self.pn_f is None and self.pn_power is not None:
raise ValueError(
'Lengths of `pn_f` and `pn_power` should be the same')
if self.pn_f is not None and self.pn_power is not None:
if len(self.pn_f) != len(self.pn_power):
raise ValueError(
'Lengths of `pn_f` and `pn_power` should be the same')
# Extend `prp` to a numpy.1darray.
# Length equels to `pulses`
if prp is None:
self.prp = self.pulse_length + np.zeros(pulses)
else:
if isinstance(prp, (list, tuple, np.ndarray)):
if len(prp) != pulses:
raise ValueError(
'Length of `prp` should equal to the \
length of `pulses`.')
else:
self.prp = prp
else:
self.prp = prp + np.zeros(pulses)
if np.min(self.prp) < self.pulse_length:
raise ValueError(
'`prp` should be larger than `pulse_length`')
# start time of each pulse, without considering the delay
self.pulse_start_time = np.cumsum(
self.prp)-self.prp[0]
# number of transmitter channels
self.channel_size = len(self.channels)
# firing delay for each channel
self.delay = np.zeros(self.channel_size)
self.locations = np.zeros((self.channel_size, 3))
self.polarization = np.zeros((self.channel_size, 3))
# waveform modulation parameters
self.waveform_mod = []
# pulse modulation parameters
self.pulse_mod = np.ones(
(self.channel_size, self.pulses), dtype=complex)
# azimuth patterns
self.az_patterns = []
self.az_angles = []
self.az_func = []
# elevation patterns
self.el_patterns = []
self.el_angles = []
self.el_func = []
# antenna peak gain
# antenna gain is calculated based on azimuth pattern
self.antenna_gains = np.zeros((self.channel_size))
self.grid = []
for tx_idx, tx_element in enumerate(self.channels):
self.delay[tx_idx] = self.channels[tx_idx].get('delay', 0)
self.locations[tx_idx, :] = np.array(
tx_element.get('location'))
self.polarization[tx_idx, :] = np.array(
tx_element.get('polarization', [0, 0, 1]))
# waveform modulation
mod_enabled = True
amp = self.channels[tx_idx].get('amp', None)
if amp is not None:
if isinstance(amp, (list, tuple, np.ndarray)):
amp = np.array(amp)
else:
amp = np.array([amp, amp])
else:
mod_enabled = False
phs = self.channels[tx_idx].get('phs', None)
if phs is not None:
if isinstance(phs, (list, tuple, np.ndarray)):
phs = np.array(phs)
else:
phs = np.array([phs, phs])
else:
mod_enabled = False
if phs is not None and amp is None:
amp = np.ones_like(phs)
mod_enabled = True
elif phs is None and amp is not None:
phs = np.zeros_like(amp)
mod_enabled = True
mod_t = self.channels[tx_idx].get('mod_t', None)
if mod_t is not None:
if isinstance(mod_t, (list, tuple, np.ndarray)):
mod_t = np.array(mod_t)
else:
mod_t = np.array([0, mod_t])
else:
mod_enabled = False
if mod_enabled:
if len(amp) != len(phs):
raise ValueError(
'Lengths of `amp` and `phs` should be the same')
mod_var = amp*np.exp(1j*phs/180*np.pi)
if len(mod_t) != len(mod_var):
raise ValueError(
'Lengths of `mod_t`, `amp`, and `phs` \
should be the same')
else:
mod_var = None
self.waveform_mod.append({
'enabled': mod_enabled,
'var': mod_var,
't': mod_t
})
# pulse modulation
pulse_amp = self.channels[tx_idx].get(
'pulse_amp', np.ones((pulses)))
pulse_phs = self.channels[tx_idx].get(
'pulse_phs', np.zeros((pulses)))/180*np.pi
if len(pulse_amp) != pulses:
raise ValueError(
'Lengths of `pulse_amp` and `pulses` should be the same')
if len(pulse_phs) != pulses:
raise ValueError(
'Length of `pulse_phs` and `pulses` should be the same')
self.pulse_mod[tx_idx, :] = pulse_amp * np.exp(1j * pulse_phs)
# azimuth pattern
self.az_angles.append(
np.array(self.channels[tx_idx].get('azimuth_angle',
np.arange(-90, 91, 180))))
self.az_patterns.append(
np.array(self.channels[tx_idx].get('azimuth_pattern',
np.zeros(2))))
if len(self.az_angles[-1]) != len(self.az_patterns[-1]):
raise ValueError(
'Lengths of `azimuth_angle` and `azimuth_pattern` \
should be the same')
self.antenna_gains[tx_idx] = np.max(self.az_patterns[-1])
self.az_patterns[-1] = self.az_patterns[-1] - \
np.max(self.az_patterns[-1])
self.az_func.append(
interp1d(self.az_angles[-1], self.az_patterns[-1],
kind='linear', bounds_error=False, fill_value=-10000)
)
# elevation pattern
self.el_angles.append(
np.array(self.channels[tx_idx].get('elevation_angle',
np.arange(-90, 91, 180))))
self.el_patterns.append(
np.array(self.channels[tx_idx].get('elevation_pattern',
np.zeros(2))))
if len(self.el_angles[-1]) != len(self.el_patterns[-1]):
raise ValueError(
'Lengths of `elevation_angle` and `elevation_pattern` \
should be the same')
self.el_patterns[-1] = self.el_patterns[-1] - \
np.max(self.el_patterns[-1])
self.el_func.append(
interp1d(
self.el_angles[-1],
self.el_patterns[-1]-np.max(self.el_patterns[-1]),
kind='linear', bounds_error=False, fill_value=-10000)
)
self.grid.append(self.channels[tx_idx].get('grid', 1))
self.box_min = np.min(self.locations, axis=0)
self.box_max = np.max(self.locations, axis=0)
class Receiver:
"""
A class defines basic parameters of a radar receiver
:param float fs:
Sampling rate (sps)
:param float noise_figure:
Noise figure (dB)
:param float rf_gain:
Total RF gain (dB)
:param float load_resistor:
Load resistor to convert power to voltage (Ohm)
:param float baseband_gain:
Total baseband gain (dB)
:param string bb_type:
Baseband data type, ``complex`` or ``real``.
Deafult is ``complex``
:param list[dict] channels:
Properties of transmitter channels
[{
- **location** (*numpy.1darray*) --
3D location of the channel [x, y, z] (m)
- **polarization** (*numpy.1darray*) --
Antenna polarization [x, y, z].
``default = [0, 0, 1] (vertical polarization)``
- **azimuth_angle** (*numpy.1darray*) --
Angles for azimuth pattern (deg). ``default [-90, 90]``
- **azimuth_pattern** (*numpy.1darray*) --
Azimuth pattern (dB). ``default [0, 0]``
- **elevation_angle** (*numpy.1darray*) --
Angles for elevation pattern (deg). ``default [-90, 90]``
- **elevation_pattern** (*numpy.1darray*) --
Elevation pattern (dB). ``default [0, 0]``
}]
:ivar float noise_bandwidth:
Bandwidth in calculating the noise (Hz).
``noise_bandwidth = fs / 2``
:ivar int channel_size:
Total number of receiver channels
:ivar numpy.2darray locations:
3D location of the channels. Size of the aray is
``[channel_size, 3 <x, y, z>]`` (m)
:ivar numpy.1darray polarization:
Antenna polarization ``[x, y, z]``.
- Horizontal polarization: ``[1, 0, 0]``
- Vertical polarization: ``[0, 0, 1]``
:ivar list[numpy.1darray] az_angles:
Angles for each channel's azimuth pattern (deg)
:ivar list[numpy.1darray] az_patterns:
Azimuth pattern for each channel (dB)
:ivar list[numpy.1darray] el_angles:
Angles for each channel's elevation pattern (deg)
:ivar list[numpy.1darray] el_patterns:
Elevation pattern for each channel (dB)
:ivar list az_func:
Azimuth patterns' interpolation functions
:ivar list el_func:
Elevation patterns' interpolation functions
:ivar numpy.1darray antenna_gains:
Antenna gain for each channel (dB).
Antenna gain is ``max(az_pattern)``
:ivar numpy.1darray box_min:
Minimum location of the transmitter box (m)
:ivar numpy.1darray box_max:
Maximum location of the transmitter box (m)
**Receiver noise**
::
| + n1 = 10*log10(Boltzmann_constant * Ts * 1000)
| | + 10*log10(noise_bandwidth) (dBm)
| v
| +------+------+
| |rf_gain |
| +------+------+
| | n2 = n1 + noise_figure + rf_gain (dBm)
| v n3 = 1e-3 * 10^(n2/10) (Watts)
| +------+------+
| |mixer |
| +------+------+
| | n4 = sqrt(n3 * load_resistor) (V)
| v
| +------+------+
| |baseband_gain|
| +------+------+
| | noise amplitude (peak to peak)
| v n5 = n4 * 10^(baseband_gain / 20) * sqrt(2) (V)
"""
def __init__(self, fs,
noise_figure=10,
rf_gain=0,
load_resistor=500,
baseband_gain=0,
bb_type='complex',
channels=[dict(location=(0, 0, 0))]):
self.fs = fs
self.noise_figure = noise_figure
self.rf_gain = rf_gain
self.load_resistor = load_resistor
self.baseband_gain = baseband_gain
self.bb_type = bb_type
if bb_type == 'complex':
self.noise_bandwidth = self.fs
elif bb_type == 'real':
self.noise_bandwidth = self.fs / 2
else:
raise ValueError('Invalid baseband type')
# additional receiver parameters
self.channels = channels
self.channel_size = len(self.channels)
self.locations = np.zeros((self.channel_size, 3))
self.polarization = np.zeros((self.channel_size, 3))
self.az_patterns = []
self.az_angles = []
self.az_func = []
self.el_patterns = []
self.el_angles = []
self.el_func = []
self.antenna_gains = np.zeros((self.channel_size))
for rx_idx, rx_element in enumerate(self.channels):
self.locations[rx_idx, :] = np.array(
rx_element.get('location'))
self.polarization[rx_idx, :] = np.array(
rx_element.get('polarization', [0, 0, 1]))
# azimuth pattern
self.az_angles.append(
np.array(self.channels[rx_idx].get('azimuth_angle',
np.arange(-90, 91, 180))))
self.az_patterns.append(
np.array(self.channels[rx_idx].get('azimuth_pattern',
np.zeros(2))))
if len(self.az_angles[-1]) != len(self.az_patterns[-1]):
raise ValueError(
'Lengths of `azimuth_angle` and `azimuth_pattern` \
should be the same')
self.antenna_gains[rx_idx] = np.max(self.az_patterns[-1])
self.az_patterns[-1] = self.az_patterns[-1] - \
np.max(self.az_patterns[-1])
self.az_func.append(
interp1d(self.az_angles[-1], self.az_patterns[-1],
kind='linear', bounds_error=False, fill_value=-10000)
)
# elevation pattern
self.el_angles.append(
np.array(self.channels[rx_idx].get('elevation_angle',
np.arange(-90, 91, 180))))
self.el_patterns.append(
np.array(self.channels[rx_idx].get('elevation_pattern',
np.zeros(2))))
if len(self.el_angles[-1]) != len(self.el_patterns[-1]):
raise ValueError(
'Lengths of `elevation_angle` and `elevation_pattern` \
should be the same')
self.el_patterns[-1] = self.el_patterns[-1] - \
np.max(self.el_patterns[-1])
self.el_func.append(
interp1d(
self.el_angles[-1],
self.el_patterns[-1]-np.max(self.el_patterns[-1]),
kind='linear', bounds_error=False, fill_value=-10000)
)
self.box_min = np.min(self.locations, axis=0)
self.box_max = np.max(self.locations, axis=0)
class Radar:
"""
A class defines basic parameters of a radar system
:param Transmitter transmitter:
Radar transmiter
:param Receiver receiver:
Radar Receiver
:param numpy.1darray location:
3D location of the radar [x, y, z] (m). ``default
[0, 0, 0]``
:param numpy.1darray speed:
Speed of the radar (m/s), [vx, vy, vz]. ``default
[0, 0, 0]``
:param numpy.1darray rotation:
Radar's angle (deg), [yaw, pitch, roll].
``default [0, 0, 0]``
:param numpy.1darray rotation_rate:
Radar's rotation rate (deg/s),
[yaw rate, pitch rate, roll rate]
``default [0, 0, 0]``
:param time:
Radar firing time instances / frames
:type time: float or numpy.1darray
:param int seed:
Seed for noise generator
:ivar int samples_per_pulse:
Number of samples in one pulse
:ivar int channel_size:
Total number of channels.
``channel_size = transmitter.channel_size * receiver.channel_size``
:ivar numpy.2darray virtual_array:
Locations of virtual array elements. [channel_size, 3 <x, y, z>]
:ivar numpy.3darray timestamp:
Timestamp for each samples. Frame start time is
defined in ``time``.
``[channes/frames, pulses, samples]``
*Channel/frame order in timestamp*
*[0]* ``Frame[0] -- Tx[0] -- Rx[0]``
*[1]* ``Frame[0] -- Tx[0] -- Rx[1]``
...
*[N]* ``Frame[0] -- Tx[1] -- Rx[0]``
*[N+1]* ``Frame[0] -- Tx[1] -- Rx[1]``
...
*[M]* ``Frame[1] -- Tx[0] -- Rx[0]``
*[M+1]* ``Frame[1] -- Tx[0] -- Rx[1]``
"""
def __init__(self,
transmitter,
receiver,
location=(0, 0, 0),
speed=(0, 0, 0),
rotation=(0, 0, 0),
rotation_rate=(0, 0, 0),
time=0,
seed=None,
**kwargs):
self.transmitter = transmitter
self.receiver = receiver
self.validation = kwargs.get('validation', False)
self.samples_per_pulse = int(self.transmitter.pulse_length *
self.receiver.fs)
self.t_offset = np.array(time)
self.frames = np.size(time)
# virtual array
self.channel_size = self.transmitter.channel_size * \
self.receiver.channel_size
self.virtual_array = np.repeat(
self.transmitter.locations, self.receiver.channel_size,
axis=0) + np.tile(self.receiver.locations,
(self.transmitter.channel_size, 1))
self.box_min = np.min(
[self.transmitter.box_min, self.receiver.box_min], axis=0)
self.box_max = np.max(
[self.transmitter.box_min, self.receiver.box_max], axis=0)
self.timestamp = self.gen_timestamp()
self.pulse_phs = self.cal_frame_phases()
self.noise = self.cal_noise()
if len(self.transmitter.f) > 2:
fun_f_t = interp1d(self.transmitter.t,
self.transmitter.f, kind='linear')
self.t = np.linspace(
self.transmitter.t[0],
self.transmitter.t[-1],
self.samples_per_pulse*100)
self.f = fun_f_t(self.t)
else:
self.f = self.transmitter.f
self.t = self.transmitter.t
self.delta_f = np.ediff1d(self.f, to_begin=0)
self.delta_t = np.ediff1d(self.t, to_begin=0)
self.k = self.delta_f[1:]/self.delta_t[1:]
# if hasattr(self.transmitter.fc, '__len__'):
self.fc_mat = np.tile(
self.transmitter.fc_vect[np.newaxis, :, np.newaxis],
(self.channel_size, 1, self.samples_per_pulse)
)
self.f_offset_mat = np.tile(
self.transmitter.f_offset[np.newaxis, :, np.newaxis],
(self.channel_size, 1, self.samples_per_pulse)
)
beat_time_samples = np.arange(0,
self.samples_per_pulse,
1) / self.receiver.fs
self.beat_time = np.tile(
beat_time_samples[np.newaxis, np.newaxis, ...],
(self.channel_size, self.transmitter.pulses, 1)
)
if self.transmitter.pn_f is not None and \
self.transmitter.pn_power is not None:
dummy_sig = np.ones(
(self.channel_size*self.frames*self.transmitter.pulses,
self.samples_per_pulse))
self.phase_noise = cal_phase_noise(
dummy_sig,
self.receiver.fs,
self.transmitter.pn_f,
self.transmitter.pn_power,
seed=seed,
validation=self.validation)
self.phase_noise = np.reshape(self.phase_noise, (
self.channel_size*self.frames,
self.transmitter.pulses,
self.samples_per_pulse
))
else:
self.phase_noise = None
self.location = np.array(location)
self.speed = np.array(speed)
self.rotation = np.array(rotation)
self.rotation_rate = np.array(rotation_rate)
shape = np.shape(self.timestamp)
if np.size(location[0]) > 1 or \
np.size(location[1]) > 1 or \
np.size(location[2]) > 1 or \
np.size(speed[0]) > 1 or \
np.size(speed[1]) > 1 or \
np.size(speed[2]) > 1 or \
np.size(rotation[0]) > 1 or \
np.size(rotation[1]) > 1 or \
np.size(rotation[2]) > 1 or \
np.size(rotation_rate[0]) > 1 or \
np.size(rotation_rate[1]) > 1 or \
np.size(rotation_rate[2]) > 1:
self.location = np.zeros(shape+(3,))
self.speed = np.zeros(shape+(3,))
self.rotation = np.zeros(shape+(3,))
self.rotation_rate = np.zeros(shape+(3,))
if np.size(speed[0]) > 1:
if np.shape(speed[0]) != shape:
raise ValueError(
'speed[0] must be a scalar or have the same shape as '
'timestamp')
self.speed[:, :, :, 0] = speed[0]
else:
self.speed[:, :, :, 0] = np.full(shape, speed[0])
if np.size(speed[1]) > 1:
if np.shape(speed[1]) != shape:
raise ValueError(
'speed[1] must be a scalar or have the same shape as '
'timestamp')
self.speed[:, :, :, 1] = speed[1]
else:
self.speed[:, :, :, 1] = np.full(shape, speed[1])
if np.size(speed[2]) > 1:
if np.shape(speed[2]) != shape:
raise ValueError(
'speed[2] must be a scalar or have the same shape as '
'timestamp')
self.speed[:, :, :, 2] = speed[2]
else:
self.speed[:, :, :, 2] = np.full(shape, speed[2])
if np.size(location[0]) > 1:
if np.shape(location[0]) != shape:
raise ValueError(
'location[0] must be a scalar or have the same shape '
'as timestamp')
self.location[:, :, :, 0] = location[0]
else:
self.location[:, :, :, 0] = location[0] + \
speed[0]*self.timestamp
if np.size(location[1]) > 1:
if np.shape(location[1]) != shape:
raise ValueError(
'location[1] must be a scalar or have the same shape '
'as timestamp')
self.location[:, :, :, 1] = location[1]
else:
self.location[:, :, :, 1] = location[1] + \
speed[1]*self.timestamp
if np.size(location[2]) > 1:
if np.shape(location[2]) != shape:
raise ValueError(
'location[2] must be a scalar or have the same shape '
'as timestamp')
self.location[:, :, :, 2] = location[2]
else:
self.location[:, :, :, 2] = location[2] + \
speed[2]*self.timestamp
if np.size(rotation_rate[0]) > 1:
if np.shape(rotation_rate[0]) != shape:
raise ValueError(
'rotation_rate[0] must be a scalar or have the same '
'shape as timestamp')
self.rotation_rate[:, :, :, 0] = np.radians(rotation_rate[0])
else:
self.rotation_rate[:, :, :, 0] = np.full(
shape, np.radians(rotation_rate[0]))
if np.size(rotation_rate[1]) > 1:
if np.shape(rotation_rate[1]) != shape:
raise ValueError(
'rotation_rate[1] must be a scalar or have the same '
'shape as timestamp')
self.rotation_rate[:, :, :, 1] = np.radians(rotation_rate[1])
else:
self.rotation_rate[:, :, :, 1] = np.full(
shape, np.radians(rotation_rate[1]))
if np.size(rotation_rate[2]) > 1:
if np.shape(rotation_rate[2]) != shape:
raise ValueError(
'rotation_rate[2] must be a scalar or have the same '
'shape as timestamp')
self.rotation_rate[:, :, :, 2] = np.radians(rotation_rate[2])
else:
self.rotation_rate[:, :, :, 2] = np.full(
shape, np.radians(rotation_rate[2]))
if np.size(rotation[0]) > 1:
if np.shape(rotation[0]) != shape:
raise ValueError(
'rotation[0] must be a scalar or have the same shape '
'as timestamp')
self.rotation[:, :, :, 0] = np.radians(rotation[0])
else:
self.rotation[:, :, :, 0] = np.radians(
rotation[0] + rotation_rate[0]*self.timestamp)
if np.size(rotation[1]) > 1:
if np.shape(rotation[1]) != shape:
raise ValueError(
'rotation[1] must be a scalar or have the same shape '
'as timestamp')
self.rotation[:, :, :, 1] = np.radians(rotation[1])
else:
self.rotation[:, :, :, 1] = np.radians(
rotation[1] + rotation_rate[1]*self.timestamp)
if np.size(rotation[2]) > 1:
if np.shape(rotation[2]) != shape:
raise ValueError(
'rotation[2] must be a scalar or have the same shape '
'as timestamp')
self.rotation[:, :, :, 2] = np.radians(rotation[2])
else:
self.rotation[:, :, :, 2] = np.radians(
rotation[2] + rotation_rate[2]*self.timestamp)
else:
self.speed = np.array(speed)
self.loccation = np.array(location)
self.rotation = np.array(np.radians(rotation))
self.rotation_rate = np.array(np.radians(rotation_rate))
def gen_timestamp(self):
"""
Generate timestamp
:return:
Timestamp for each samples. Frame start time is
defined in ``time``.
``[channes/frames, pulses, samples]``
:rtype: numpy.3darray
"""
channel_size = self.channel_size
rx_channel_size = self.receiver.channel_size
pulses = self.transmitter.pulses
samples = self.samples_per_pulse
crp = self.transmitter.prp
delay = self.transmitter.delay
fs = self.receiver.fs
chirp_delay = np.tile(
np.expand_dims(
np.expand_dims(np.cumsum(crp)-crp[0], axis=1),
axis=0),
(channel_size, 1, samples))
tx_idx = np.arange(0, channel_size)/rx_channel_size
tx_delay = np.tile(
np.expand_dims(
np.expand_dims(delay[tx_idx.astype(int)], axis=1),
axis=2),
(1, pulses, samples))
timestamp = tx_delay+chirp_delay+np.tile(
np.expand_dims(
np.expand_dims(np.arange(0, samples), axis=0),
axis=0),
(channel_size, pulses, 1))/fs
if self.frames > 1:
toffset = np.repeat(
np.tile(
np.expand_dims(
np.expand_dims(self.t_offset, axis=1), axis=2), (
1, self.transmitter.pulses, self.samples_per_pulse
)), self.channel_size, axis=0)
timestamp = np.tile(timestamp, (self.frames, 1, 1)) + toffset
elif self.frames == 1:
timestamp = timestamp + self.t_offset
return timestamp
def cal_frame_phases(self):
"""
Calculate phase sequence for frame level modulation
:return:
Phase sequence. ``[channes/frames, pulses, samples]``
:rtype: numpy.2darray
"""