forked from shader-slang/slang
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathslang-ir-use-uninitialized-values.cpp
730 lines (616 loc) · 19.8 KB
/
slang-ir-use-uninitialized-values.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
#include "slang-ir-use-uninitialized-values.h"
#include "slang-ir-insts.h"
#include "slang-ir-reachability.h"
#include "slang-ir-util.h"
#include "slang-ir.h"
namespace Slang
{
static bool isMetaOp(IRInst* inst)
{
switch (inst->getOp())
{
// These instructions only look at the parameter's type,
// so passing an undefined value to them is permissible
case kIROp_IsBool:
case kIROp_IsInt:
case kIROp_IsUnsignedInt:
case kIROp_IsSignedInt:
case kIROp_IsHalf:
case kIROp_IsFloat:
case kIROp_IsVector:
case kIROp_GetNaturalStride:
case kIROp_TypeEquals:
return true;
default:
break;
}
return false;
}
static bool isUninitializedValue(IRInst* inst)
{
// Also consider var since it does not
// automatically mean it will be initialized
// (at least not as the user may have intended)
return (inst->m_op == kIROp_undefined) || (inst->m_op == kIROp_Var);
}
static bool isUnmodifying(IRFunc* func)
{
auto intr = func->findDecoration<IRIntrinsicOpDecoration>();
return (intr && intr->getIntrinsicOp() == kIROp_Unmodified);
}
enum ParameterCheckType
{
Never, // Parameter does NOT to be checked for uninitialization (e.g. is `in` or special type)
AsOut, // Parameter DOES need to be checked for usage before initializations
AsInOut // Parameter DOES need to be checked to see if it is ever written to
};
static ParameterCheckType isPotentiallyUnintended(IRParam* param, Stage stage, int index)
{
IRType* type = param->getFullType();
if (auto out = as<IROutType>(param->getFullType()))
{
// Don't check `out Vertices<T>` or `out Indices<T>` parameters
// in mesh shaders.
// TODO: we should find a better way to represent these mesh shader
// parameters so they conform to the initialize before use convention.
// For example, we can use a `OutputVetices` and `OutputIndices` type
// to represent an output, like `OutputPatch` in domain shader.
// For now, we just skip the check for these parameters.
switch (out->getValueType()->getOp())
{
case kIROp_VerticesType:
case kIROp_IndicesType:
case kIROp_PrimitivesType:
return Never;
default:
break;
}
return AsOut;
}
else if (auto inout = as<IRInOutType>(type))
{
// TODO: some way to check if the method
// is actually used for autodiff
if (as<IRDifferentialPairUserCodeType>(inout->getValueType()))
return Never;
switch (stage)
{
case Stage::AnyHit:
case Stage::ClosestHit:
// In HLSL the payload is required to be `inout`
return (index == 0) ? Never : AsInOut;
case Stage::Geometry:
// Second parameter is the triangle stream
return (index == 1) ? Never : AsInOut;
default:
break;
}
return AsInOut;
}
return Never;
}
static bool isAliasable(IRInst* inst)
{
switch (inst->getOp())
{
// These instructions generate (implicit) references to inst
case kIROp_FieldExtract:
case kIROp_FieldAddress:
case kIROp_GetElement:
case kIROp_GetElementPtr:
case kIROp_InOutImplicitCast:
return true;
default:
break;
}
return false;
}
static bool isDifferentiableFunc(IRInst* func)
{
for (auto decor = func->getFirstDecoration(); decor; decor = decor->getNextDecoration())
{
switch (decor->getOp())
{
case kIROp_ForwardDerivativeDecoration:
case kIROp_ForwardDifferentiableDecoration:
case kIROp_BackwardDerivativeDecoration:
case kIROp_BackwardDifferentiableDecoration:
case kIROp_UserDefinedBackwardDerivativeDecoration:
return true;
default:
break;
}
}
return false;
}
static IRInst* resolveSpecialization(IRSpecialize* spec)
{
IRInst* base = spec->getBase();
while (auto baseSpecialize = as<IRSpecialize>(base))
{
base = resolveSpecialization(baseSpecialize);
}
auto baseGeneric = as<IRGeneric>(base);
if (!baseGeneric)
return base;
return findInnerMostGenericReturnVal(baseGeneric);
}
// The `upper` field contains the struct that the type is
// is contained in. It is used to check for empty structs.
static bool canIgnoreType(IRType* type, IRType* upper)
{
// In case specialization returns a function instead
if (!type)
return true;
if (as<IRVoidType>(type))
return true;
// For structs, ignore if its empty
if (auto str = as<IRStructType>(type))
{
int count = 0;
for (auto field : str->getFields())
{
IRType* ftype = field->getFieldType();
count += !canIgnoreType(ftype, type);
}
return (count == 0);
}
// Nothing to initialize for a pure interface
if (as<IRInterfaceType>(type))
return true;
// We don't know what TypeType will be yet.
if (as<IRParam>(type) && as<IRTypeType>(type->getDataType()))
return true;
// For pointers, check the value type (primarily for globals)
if (auto ptr = as<IRPtrType>(type))
{
// Avoid the recursive step if its a
// recursive structure like a linked list
IRType* ptype = ptr->getValueType();
if (auto resolvedType = as<IRType>(getResolvedInstForDecorations(ptype)))
ptype = resolvedType;
return (ptype != upper) && canIgnoreType(ptype, upper);
}
// In the case of specializations, check returned type
if (auto spec = as<IRSpecialize>(type))
{
IRInst* inner = resolveSpecialization(spec);
IRType* innerType = as<IRType>(inner);
return canIgnoreType(innerType, upper);
}
return false;
}
static List<IRInst*> getAliasableInstructions(IRInst* inst)
{
List<IRInst*> addresses;
addresses.add(inst);
for (auto use = inst->firstUse; use; use = use->nextUse)
{
IRInst* user = use->getUser();
// Meta instructions only use the argument type
if (isMetaOp(user) || !isAliasable(user))
continue;
addresses.addRange(getAliasableInstructions(user));
}
return addresses;
}
enum InstructionUsageType
{
None, // Instruction neither stores nor loads from the soruce (e.g. meta operations)
Store, // Instruction acts as a write to the source
StoreParent, // Instruction's parent acts as a write to the source
Load // Instruciton acts as a load from the source
};
static InstructionUsageType getCallUsageType(IRCall* call, IRInst* inst)
{
IRInst* callee = call->getCallee();
// Resolve the actual function
IRFunc* ftn = nullptr;
IRFuncType* ftype = nullptr;
if (auto spec = as<IRSpecialize>(callee))
ftn = as<IRFunc>(resolveSpecialization(spec));
// Differentiable functions are mostly ignored, treated as having inout parameters
else if (as<IRForwardDifferentiate>(callee))
return Store;
else if (as<IRBackwardDifferentiate>(callee))
return Store;
else if (auto wit = as<IRLookupWitnessMethod>(callee))
ftype = as<IRFuncType>(wit->getFullType());
else
ftn = as<IRFunc>(callee);
// Find the argument index so we can fetch the type
int index = 0;
auto args = call->getArgsList();
for (int i = 0; i < args.getCount(); i++)
{
if (args[i] == inst)
{
index = i;
break;
}
}
if (ftn)
ftype = as<IRFuncType>(ftn->getFullType());
if (!ftype)
return None;
// Consider it as a store if its passed
// as an out/inout/ref parameter
auto type = unwrapAttributedType(ftype->getParamType(index));
return (as<IROutType>(type) || as<IRInOutType>(type) || as<IRRefType>(type)) ? Store : Load;
}
static InstructionUsageType getInstructionUsageType(IRInst* user, IRInst* inst)
{
// Meta intrinsics (which evaluate on type) do nothing
if (isMetaOp(user))
return None;
// Ignore instructions generating more aliases
if (isAliasable(user))
return None;
switch (user->getOp())
{
case kIROp_loop:
case kIROp_unconditionalBranch:
// TODO: Ignore branches for now
return None;
case kIROp_Call:
// Function calls can be either
// stores or loads depending on
// whether the callee takes it
// in as a out parameter or not
return getCallUsageType(as<IRCall>(user), inst);
// These instructions will store data...
case kIROp_Store:
case kIROp_SwizzledStore:
case kIROp_SPIRVAsm:
case kIROp_AtomicStore:
return Store;
case kIROp_SPIRVAsmOperandInst:
// For SPIRV asm instructions, need to check out the entire
// block when doing reachability checks
return StoreParent;
case kIROp_MakeExistential:
case kIROp_MakeExistentialWithRTTI:
// For specializing generic structs
return Store;
// Miscellaenous cases
case kIROp_ManagedPtrAttach:
case kIROp_Unmodified:
return Store;
default:
// Default case is that if the instruction is a pointer, it
// is considered a store, otherwise a load.
if (as<IRPtrTypeBase>(user->getDataType()))
return Store;
return Load;
}
}
static void collectSpecialCaseInstructions(List<IRInst*>& stores, IRBlock* block)
{
for (auto inst = block->getFirstInst(); inst; inst = inst->next)
{
if (as<IRGenericAsm>(inst))
stores.add(inst);
}
}
static void collectInstructionByUsage(
List<IRInst*>& stores,
List<IRInst*>& loads,
IRInst* user,
IRInst* inst)
{
InstructionUsageType usage = getInstructionUsageType(user, inst);
switch (usage)
{
case Load:
return loads.add(user);
case Store:
return stores.add(user);
case StoreParent:
return stores.add(user->getParent());
}
}
static void cancelLoads(
ReachabilityContext& reachability,
const List<IRInst*>& stores,
List<IRInst*>& loads)
{
// Remove all loads which are reachable from stores
for (auto store : stores)
{
for (Index i = 0; i < loads.getCount();)
{
if (reachability.isInstReachable(store, loads[i]))
loads.fastRemoveAt(i);
else
i++;
}
}
}
static void collectAliasableLoadStores(IRInst* inst, List<IRInst*>& stores, List<IRInst*>& loads)
{
auto addresses = getAliasableInstructions(inst);
for (auto alias : addresses)
{
// TODO: Mark specific parts assigned to for partial initialization checks
for (auto use = alias->firstUse; use; use = use->nextUse)
collectInstructionByUsage(stores, loads, use->getUser(), alias);
}
}
static List<IRInst*> getUnresolvedParamLoads(
ReachabilityContext& reachability,
IRFunc* func,
IRInst* inst)
{
// Partition instructions
List<IRInst*> stores;
List<IRInst*> loads;
collectAliasableLoadStores(inst, stores, loads);
// Special cases for parameters
for (const auto& b : func->getBlocks())
{
collectSpecialCaseInstructions(stores, b);
auto t = b->getTerminator();
if (as<IRReturn>(t))
loads.add(t);
}
cancelLoads(reachability, stores, loads);
return loads;
}
static List<IRInst*> getUnresolvedVariableLoads(ReachabilityContext& reachability, IRInst* inst)
{
// Partition instructions
List<IRInst*> stores;
List<IRInst*> loads;
collectAliasableLoadStores(inst, stores, loads);
cancelLoads(reachability, stores, loads);
return loads;
}
static bool isInstStoredInto(ReachabilityContext& reachability, IRInst* reference, IRInst* inst)
{
List<IRInst*> stores;
List<IRInst*> loads;
for (auto alias : getAliasableInstructions(inst))
{
for (auto use = alias->firstUse; use; use = use->nextUse)
collectInstructionByUsage(stores, loads, use->getUser(), alias);
}
for (auto store : stores)
{
if (reachability.isInstReachable(store, reference))
return true;
}
return false;
}
static IRInst* traceInstOrigin(IRInst* inst)
{
if (auto load = as<IRLoad>(inst))
return traceInstOrigin(load->getPtr());
return inst;
}
static bool isReturnedValue(IRInst* inst)
{
for (auto use = inst->firstUse; use; use = use->nextUse)
{
IRInst* user = use->getUser();
if (as<IRReturn>(user))
return true;
// Loading from a Ptr type should be
// treated as an aliased path to any return
IRLoad* load = as<IRLoad>(user);
if (load && isReturnedValue(load))
return true;
}
return false;
}
static bool isDirectlyWrittenTo(IRInst* inst)
{
for (auto use = inst->firstUse; use; use = use->nextUse)
{
InstructionUsageType usage = getInstructionUsageType(use->getUser(), inst);
if (usage == Store || usage == StoreParent)
return true;
}
return false;
}
static List<IRStructField*> checkFieldsFromExit(
ReachabilityContext& reachability,
IRReturn* ret,
IRStructType* type)
{
IRInst* origin = traceInstOrigin(ret->getVal());
// We don't want to warn on delegated construction
if (!isUninitializedValue(origin))
return {};
// Check if the origin instruction is ever written to
if (isDirectlyWrittenTo(origin))
return {};
// Now we can look for all references to fields
HashSet<IRStructKey*> usedKeys;
for (auto use = origin->firstUse; use; use = use->nextUse)
{
IRInst* user = use->getUser();
auto fieldAddress = as<IRFieldAddress>(user);
if (!fieldAddress || !isInstStoredInto(reachability, ret, user))
continue;
IRInst* field = fieldAddress->getField();
usedKeys.add(as<IRStructKey>(field));
}
List<IRStructField*> uninitializedFields;
auto fields = type->getFields();
for (auto field : fields)
{
if (canIgnoreType(field->getFieldType(), nullptr))
continue;
if (!usedKeys.contains(field->getKey()))
uninitializedFields.add(field);
}
return uninitializedFields;
}
static void checkConstructor(IRFunc* func, ReachabilityContext& reachability, DiagnosticSink* sink)
{
auto constructor = func->findDecoration<IRConstructorDecorartion>();
if (!constructor)
return;
IRStructType* stype = as<IRStructType>(func->getResultType());
if (!stype)
return;
// Don't bother giving warnings if its not being used
bool synthesized = constructor->getSynthesizedStatus();
if (synthesized && !func->firstUse)
return;
auto printWarnings = [&](const List<IRStructField*>& fields, IRReturn* ret)
{
for (auto field : fields)
{
if (synthesized)
{
sink->diagnose(
field->getKey(),
Diagnostics::fieldNotDefaultInitialized,
stype,
field->getKey());
}
else
{
sink->diagnose(ret, Diagnostics::constructorUninitializedField, field->getKey());
}
}
};
// Work backwards, get exit points and find sources
for (auto block : func->getBlocks())
{
for (auto inst = block->getFirstInst(); inst; inst = inst->next)
{
auto ret = as<IRReturn>(inst);
if (!ret)
continue;
auto fields = checkFieldsFromExit(reachability, ret, stype);
printWarnings(fields, ret);
}
}
}
static void checkParameterAsOut(
ReachabilityContext& reachability,
IRFunc* func,
IRParam* param,
DiagnosticSink* sink)
{
auto loads = getUnresolvedParamLoads(reachability, func, param);
for (auto load : loads)
{
sink->diagnose(
load,
as<IRTerminatorInst>(load) ? Diagnostics::returningWithUninitializedOut
: Diagnostics::usingUninitializedOut,
param);
}
}
static void checkUninitializedValues(IRFunc* func, DiagnosticSink* sink)
{
// Differentiable functions will generate undefined values
// strictly so that they can be set in a differentiable way
if (isDifferentiableFunc(func))
return;
auto firstBlock = func->getFirstBlock();
if (!firstBlock)
return;
ReachabilityContext reachability(func);
// Used for a further analysis and to skip usual return checks
auto constructor = func->findDecoration<IRConstructorDecorartion>();
// Special checks for stages e.g. raytracing shader
Stage stage = Stage::Unknown;
if (auto entry = func->findDecoration<IREntryPointDecoration>())
stage = entry->getProfile().getStage();
// Check out parameters
if (!isUnmodifying(func))
{
int index = 0;
for (auto param : firstBlock->getParams())
{
ParameterCheckType checkType = isPotentiallyUnintended(param, stage, index);
if (checkType == AsOut)
checkParameterAsOut(reachability, func, param, sink);
index++;
}
}
// Check ordinary instructions
for (auto block : func->getBlocks())
{
for (auto inst = block->getFirstInst(); inst; inst = inst->getNextInst())
{
if (!isUninitializedValue(inst))
continue;
// This will be looked into later
if (constructor && isReturnedValue(inst))
continue;
IRType* type = inst->getFullType();
if (canIgnoreType(type, nullptr))
continue;
auto loads = getUnresolvedVariableLoads(reachability, inst);
for (auto load : loads)
{
sink->diagnose(load, Diagnostics::usingUninitializedVariable, inst);
}
}
}
// Separate analysis for constructors
checkConstructor(func, reachability, sink);
}
static void checkUninitializedGlobals(IRGlobalVar* variable, DiagnosticSink* sink)
{
IRType* type = variable->getFullType();
if (canIgnoreType(type, nullptr))
return;
// Check for semantic decorations
// (e.g. globals like gl_GlobalInvocationID)
if (variable->findDecoration<IRSemanticDecoration>())
return;
if (variable->findDecoration<IRGlobalInputDecoration>())
return;
if (variable->findDecoration<IRVulkanHitAttributesDecoration>())
return;
// Check for initialization blocks
for (auto inst : variable->getChildren())
{
if (as<IRBlock>(inst))
return;
}
auto addresses = getAliasableInstructions(variable);
List<IRInst*> loads;
for (auto alias : addresses)
{
for (auto use = alias->firstUse; use; use = use->nextUse)
{
InstructionUsageType usage = getInstructionUsageType(use->getUser(), alias);
if (usage == Store || usage == StoreParent)
return;
if (usage == Load)
loads.add(use->getUser());
}
}
for (auto load : loads)
{
sink->diagnose(load, Diagnostics::usingUninitializedGlobalVariable, variable);
}
}
void checkForUsingUninitializedValues(IRModule* module, DiagnosticSink* sink)
{
for (auto inst : module->getGlobalInsts())
{
if (auto func = as<IRFunc>(inst))
{
checkUninitializedValues(func, sink);
}
else if (auto generic = as<IRGeneric>(inst))
{
auto retVal = findGenericReturnVal(generic);
if (auto funcVal = as<IRFunc>(retVal))
checkUninitializedValues(funcVal, sink);
}
else if (auto global = as<IRGlobalVar>(inst))
{
checkUninitializedGlobals(global, sink);
}
}
}
} // namespace Slang