-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAFS Data, regression, Figure 4, Table 2-7.R
687 lines (597 loc) · 40.3 KB
/
AFS Data, regression, Figure 4, Table 2-7.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
#Data reading, cleaning, and regression, Table 2-7, and Figure 4 made by Daniel Chrisendo
install.packages("sf")
install.packages("dplyr")
install.packages("tidyr")
install.packages("tidyverse")
install.packages("naniar")
install.packages("scico")
install.packages("xlsx")
install.packages("writexl")
install.packages("fixest")
install.packages("modelsummary")
install.packages("flextable")
install.packages("epiDisplay")
install.packages("plotrix")
library(sf)
library(dplyr)
library(tidyr)
library(tidyverse)
library(readxl)
library(fixest)
library(readr)
library(broom)
library("naniar")
library(ggplot2)
library(forcats)
library(scico)
library(openxlsx)
library(xlsx)
library("writexl")
library(zoo)
library(Hmisc)
library(modelsummary)
library(flextable)
library(plotrix)
library(epiDisplay)
#set workind directory. For example:
#setwd("/Volumes/chrised1/Papers/Food Loss/Data/")
#1 Read data
#1.a country ids
cntryID <- read_csv("countries_codes_and_coordinates.csv") %>%
select(-GADM_code) %>%
select(cntry_code,iso2,iso3,Country,RegionID) %>%
mutate(iso2 = ifelse(Country == 'Namibia','NB',iso2)) %>%
mutate(RegionID = as.factor(RegionID))
#1.b regional name
regName <- cntryID %>%
rename(Country.Name=`Country`) %>%
mutate(regionalName= ifelse(RegionID==1, "Australia and Oceania",
ifelse(RegionID==2|RegionID==6, "Latin America & the Caribbean",
ifelse(RegionID==3|RegionID==11, "East & Southeast Asia",
ifelse(RegionID==4|RegionID==10|RegionID==12, "Europe & North America",
ifelse(RegionID==5, "Central & South Asia",
ifelse(RegionID==7, "Sub-Saharan Africa",
ifelse(RegionID==8|RegionID==9, "Middle East & North Africa", NA)))))))) %>%
#correct regionalName of some countries
mutate(regionalName=ifelse(cntry_code==4|cntry_code==398|cntry_code==417|cntry_code==762|cntry_code==795|
cntry_code==860|cntry_code==876,"Central & South Asia",regionalName)) %>%
mutate(regionalName=ifelse(cntry_code==516, "Sub-Saharan Africa", regionalName)) %>%
pivot_longer(!c(Country.Name,iso3,iso2,cntry_code,RegionID), values_to = "regionalName") %>%
select(-c(iso2,iso3,Country.Name,name,RegionID))
#1.c World Bank data
f_readWBdata <- function(dataIn,varName) {
# read urb population share data (world bank)
gni <- read_excel(dataIn,sheet = "Data",skip = 2) %>%
select(`Country Name`, `Country Code`, as.character(c(1990:2020))) %>%
rename(iso3=`Country Code`) %>%
rename(Country.Name=`Country Name`) %>%
mutate(iso3 = ifelse(iso3=="XKX", "XKO", iso3)) %>% # for kosovo correct code
as_tibble() %>%
left_join(cntryID[,c(1,3)]) %>%
filter(!is.na(cntry_code)) %>%
select(Country.Name,iso3,cntry_code,everything())
#drop_na()
# put it to long format so that easy to join with food loss data
gni_long <- gni %>%
pivot_longer(!c(Country.Name,iso3,cntry_code),names_to = "year", values_to = varName) %>%
select(-c(iso3,Country.Name)) %>%
# we need to make year as numeric to be compatible with food loss data
mutate(year = as.numeric(year))
return(gni_long)
}
# read all the data in you need to
# just download the xls data from world bank and put it to a function
gni_long <- f_readWBdata("API_NY.GNP.PCAP.PP.CD_DS2_en_excel_v2_3472325.xls","gni")
agriShr_long <- f_readWBdata("API_NV.AGR.TOTL.ZS_DS2_en_excel_v2_3469285.xls","agriShr")
agriEmp_long <- f_readWBdata("API_SL.AGR.EMPL.ZS_DS2_en_excel_v2_3469532.xls","agriEmp")
electricityRural_long <- f_readWBdata("API_EG.ELC.ACCS.RU.ZS_DS2_en_excel_v2_3471132.xls","electricityRural")
phoneSub_long <- f_readWBdata("API_IT.CEL.SETS.P2_DS2_en_excel_v2_3469999.xls", "phoneSub")
export_long <- f_readWBdata("API_TX.QTY.MRCH.XD.WD_DS2_en_excel_v2_3480226.xls", "export")
property_long <- f_readWBdata("API_IQ.CPA.PROP.XQ_DS2_en_excel_v2_3693990.xls", "property")
#1.d World bank data (income level)
f_readWBdata1 <- function(dataIn,varName) {
# read the income level data (World Bank)
incLevel <- read_excel(dataIn, sheet="Country Analytical History", skip = 5)
incLevel[-c(1:5),] %>%
select(c(1:2,6:36)) %>%
rename_at(1, ~'iso3') %>%
rename_at(2, ~'Country.Name') %>%
mutate(iso3 = ifelse(iso3=="XKX", "XKO", iso3)) %>% # for kosovo correct code
as_tibble() %>%
left_join(cntryID[,c(1,3)]) %>%
filter(!is.na(cntry_code)) %>%
select(Country.Name,iso3,cntry_code,everything())
}
incLevel <- f_readWBdata1("OGHIST.xlsx","incLevel")
#put it into long format so that easy to join with food loss data
incLevel_long <- incLevel %>%
pivot_longer(!c(Country.Name,iso3,cntry_code),names_to = "year") %>%
select(-c(iso3,Country.Name)) %>%
# we need to make year as numeric to be compatible with food loss data
mutate(year = as.numeric(year)) %>%
rename_at(3, ~'incLevel')
#1.e UN Data
f_readUNdata1 <- function(dataIn,varName) {
# read education data
edu <- read_csv(dataIn,skip = 6) %>%
# remove columns ...4, ...6, ... ...62
select(-paste0('...',seq(4,62,2))) %>%
# replace '..' values with NA
naniar::replace_with_na_all(condition = ~.x == '..') %>%
#replace_with_na(replace = list('1990' = '..'))
select(-'HDI Rank') %>%
# rename countries to match the cntry_id file
mutate(Country = ifelse(Country == 'Bolivia (Plurinational State of)', 'Bolivia',
ifelse(Country == 'Brunei Darussalam', 'Brunei',
ifelse(Country == 'Cabo Verde','Cape Verde',
ifelse(Country == 'Congo (Democratic Republic of the)','Congo',Country))))) %>%
mutate(Country = ifelse(Country == 'Czechia', 'Czech Republic',
ifelse(Country == "Côte d'Ivoire", 'Ivory Coast',
ifelse(Country == 'Eswatini (Kingdom of)','Swaziland',
ifelse(Country == 'Hong Kong, China (SAR)','Hong Kong',Country))))) %>%
mutate(Country = ifelse(Country == 'Iran (Islamic Republic of)', 'Iran, Islamic Republic of',
ifelse(Country == "Korea (Republic of)", 'South Korea',
ifelse(Country == 'Micronesia (Federated States of)','Micronesia, Federated States of',
ifelse(Country == 'Moldova (Republic of)','Moldova, Republic of',Country))))) %>%
mutate(Country = ifelse(Country == 'North Macedonia', 'Macedonia, the former Yugoslav Republic of',
ifelse(Country == "Palestine, State of", 'Palestinian Territory, Occupied',
ifelse(Country == 'Russian Federation','Russia',
ifelse(Country == 'Tanzania (United Republic of)','Tanzania, United Republic of',Country))))) %>%
mutate(Country = ifelse(Country == 'Venezuela (Bolivarian Republic of)', 'Venezuela',
ifelse(Country == "Viet Nam", 'Vietnam',Country))) %>%
# join cntry_id file
left_join(cntryID[,c(1,4)]) %>%
select(Country,cntry_code,everything()) %>%
# remove entries without cntry_code
filter(!is.na(cntry_code))
# put it to long format so that easy to join with food loss data
edu_long <- edu %>%
pivot_longer(!c(Country,cntry_code),names_to = "year", values_to = varName) %>%
select(-c(Country)) %>%
# we need to make year as numeric to be compatible with food loss data
mutate(year = as.numeric(year))
return(edu_long)
}
# read all the data in you need to
# just download the xls data from world bank and put it to a function
school_long <- f_readUNdata1("Mean years of schooling (years).csv","schoolYear") %>%
mutate(schoolYear = as.numeric(schoolYear))
#1.f FAO data
fao_id <- read.csv('cntry_fao_id.csv')
# join fao id with other ids
cntryID_fao <- cntryID %>%
left_join(fao_id[,c(4,11)], by = c('cntry_code'='iso_n3'))
f_readFAOSTATdata <- function(dataIn,varName) {
# read data
# read faostat data
polStab <- read_excel(dataIn,sheet = "Sheet1",skip = 0) %>%
# select the wanted columns
select(`Area Code (FAO)`, `Area`,Year,Value) %>%
rename(fao_id = 'Area Code (FAO)') %>%
rename(Country=Area) %>%
rename(year = Year) %>%
mutate(fao_id = as.integer(fao_id)) %>%
# year and Value to numeric
mutate(year = as.numeric(year)) %>%
mutate(Value = as.numeric(Value)) %>%
# add the cntry id data
left_join(cntryID_fao[,c(1,6)]) %>%
# remove all countries without cntry code
filter(!is.na(cntry_code)) %>%
# rename Value with the given VarName
rename(!!varName := Value) %>%
# select the wanted columns %>%
select(cntry_code,year,!!varName)
return(polStab)
}
polStab <- f_readFAOSTATdata("FAOSTAT_data_1-31-2022-2.xls",'polStab')
#1.g Food loss data
foodLoss <- read_csv("Data.csv") %>%
rename(cntry_code = m49_code) %>%
# you can choose the wanted columns
select(cntry_code,country,year,cpc_code,commodity,activity,loss_percentage,food_supply_stage) %>%
# create new group for food supply chain
mutate(supChainGr= ifelse(food_supply_stage=="Farm" | food_supply_stage=="Harvest" | food_supply_stage=="Pre-harvest", "On-farm",
ifelse(food_supply_stage=="Post-harvest" | food_supply_stage=="Grading" | food_supply_stage=="Transport" | food_supply_stage=="Storage"| food_supply_stage=="Trader" | food_supply_stage=="Processing", "Post-harvest", NA))) %>%
group_by(country, year, commodity, activity, food_supply_stage) %>%
mutate(loss_percentage=mean(loss_percentage)) %>%
ungroup() %>%
distinct() %>% #to remove duplicates
group_by(country, year, commodity, food_supply_stage) %>% #to add all loss_percentage in the same food supply stage
mutate(loss_percentage1 = sum(loss_percentage)) %>%
ungroup() %>%
distinct(country, year, commodity, food_supply_stage, .keep_all= TRUE) %>%
drop_na(supChainGr)
#1.f FAO basket items
cpc_cereals <- read_csv("Data_cerealsPulses.csv") %>%
select(cpc_code) %>%
distinct() %>%
mutate(basketItem = "cereals")
cpc_fruits <- read_csv("Data_fruitsVegs.csv") %>%
select(cpc_code) %>%
distinct( ) %>%
mutate(basketItem = "fruits")
cpc_meat <- read_csv("Data_meatAnimal.csv") %>%
select(cpc_code) %>%
distinct() %>%
mutate(basketItem = "meat")
cpc_other <- read_csv("Data_other.csv") %>%
select(cpc_code) %>%
distinct() %>%
mutate(basketItem = "other")
cpc_roots <- read_csv("Data_rootsTubers.csv") %>%
select(cpc_code) %>%
distinct() %>%
mutate(basketItem = "roots")
cpc_basketItem <- rbind(cpc_cereals,cpc_fruits,cpc_meat,cpc_other,cpc_roots)
#1.g Combine sosec data
sosecData <- gni_long %>%
left_join(agriShr_long) %>%
left_join(agriEmp_long) %>%
left_join(school_long) %>%
left_join(export_long) %>%
left_join(phoneSub_long) %>%
left_join(electricityRural_long) %>%
left_join(polStab) %>%
left_join(property_long) %>%
left_join(cntryID_fao) %>%
select(1,14, 2:11) #to rearrange the column order
write.csv(sosecData, "/Volumes/chrised1/Papers/Food Loss/Data/sosecData1.csv")
#The missing SE data is then interpolated and extrapolated by Matti Kummu (please see the interpolation and extrapolation code)
#2 combine food loss data with SE data that has been interpolated and extrapolated. The new SE data is derived from the interpolateAdm0
intraExtra <- read_csv("matti_adm0_seData_interpExtrap_GnicMsch_2000_2020.csv")
foodLoss_comb <- foodLoss %>%
left_join(cpc_basketItem) %>%
mutate(basketItem2= ifelse(commodity=="Wheat", "wheat",
ifelse(commodity=="Maize (corn)", "maize",
ifelse(commodity=="Rice", "rice", basketItem)))) %>%
select(c(1:3,5,8,10,12)) %>%
filter(basketItem2=="wheat"|basketItem2=="rice"|basketItem2=="maize"|basketItem2=="cereals"|basketItem2=="fruits"|
basketItem2=="fruits"|basketItem2=="roots") %>%
left_join(intraExtra) %>%
left_join(regName) %>%
left_join(incLevel_long) %>% #combine with income level
mutate(incLevel= str_replace(incLevel, "LM", "M")) %>%
mutate(incLevel= str_replace(incLevel, "UM", "M")) %>%
mutate(incLevel= str_replace(incLevel, "H", "M")) %>%
filter(country!="Europe" & country!="Southern Asia" & country!="South-Eastern Asia" & country!="Central Asia" &
country!="Western Asia" & country!="Northern Africa" & country!="Western Africa" & country!="Sub-Saharan Africa" &
country!="Latin America and the Caribbean" & country!="Northern America") %>%
#select(-property) %>% #uncomment this if I want to exclude property
#polstab has range from - to + values so need to be normalized
mutate(polStab = (polStab - min(polStab, na.rm=T)) / (max(polStab, na.rm=T) - min(polStab, na.rm=T))) %>%
mutate(ln_gni = log(gni)) %>%
mutate(ln_gnic = log(gnic)) %>%
mutate(gnic = coalesce(gnic, gni)) %>%
mutate(ln_gnic = coalesce(ln_gnic, ln_gni)) %>%
mutate(msch = coalesce(msch, schoolYear)) %>%
drop_na()
#3 Final data for analysis (only including the relevant food supply stages and commodities)
foodLoss_comb_sel4 <- foodLoss_comb %>%
filter(food_supply_stage =="Farm" | food_supply_stage =="Harvest" | food_supply_stage =="Transport" | food_supply_stage =="Storage") %>%
filter(basketItem2 == "wheat" | basketItem2 == "rice" | basketItem2 == "maize" | basketItem2 == "cereals" | basketItem2 == "fruits" | basketItem2 == "roots")
write.csv(foodLoss_comb_sel4,"/Volumes/chrised1/Papers/Food Loss/Data/revFinal_data.csv") #To save the final data
#4 To generate content of Table 2
mean_se_descriptive <-
foodLoss_comb_sel4 %>%
group_by(incLevel) %>%
summarise(loss_farm_wheat=mean(loss_percentage1[food_supply_stage=="Farm" & basketItem2=="wheat"]),
se_farm_wheat=std.error(loss_percentage1[food_supply_stage=="Farm" & basketItem2=="wheat"]),
ne_farm_wheat=sum(food_supply_stage=="Farm" & basketItem2=="wheat"),
loss_harvest_wheat=mean(loss_percentage1[food_supply_stage=="Harvest" & basketItem2=="wheat"]),
se_harvest_wheat=std.error(loss_percentage1[food_supply_stage=="Harvest" & basketItem2=="wheat"]),
ne_harvest_wheat=sum(food_supply_stage=="Harvest" & basketItem2=="wheat"),
loss_storage_wheat=mean(loss_percentage1[food_supply_stage=="Storage" & basketItem2=="wheat"]),
se_storage_wheat=std.error(loss_percentage1[food_supply_stage=="Storage" & basketItem2=="wheat"]),
ne_storage_wheat=sum(food_supply_stage=="Storage" & basketItem2=="wheat"),
loss_transport_wheat=mean(loss_percentage1[food_supply_stage=="Transport" & basketItem2=="wheat"]),
se_transport_wheat=std.error(loss_percentage1[food_supply_stage=="Transport" & basketItem2=="wheat"]),
ne_transport_wheat=sum(food_supply_stage=="Transport" & basketItem2=="wheat"),
loss_farm_maize=mean(loss_percentage1[food_supply_stage=="Farm" & basketItem2=="maize"]),
se_farm_maize=std.error(loss_percentage1[food_supply_stage=="Farm" & basketItem2=="maize"]),
ne_farm_maize=sum(food_supply_stage=="Farm" & basketItem2=="maize"),
loss_harvest_maize=mean(loss_percentage1[food_supply_stage=="Harvest" & basketItem2=="maize"]),
se_harvest_maize=std.error(loss_percentage1[food_supply_stage=="Harvest" & basketItem2=="maize"]),
ne_harvest_maize=sum(food_supply_stage=="Harvest" & basketItem2=="maize"),
loss_storage_maize=mean(loss_percentage1[food_supply_stage=="Storage" & basketItem2=="maize"]),
se_storage_maize=std.error(loss_percentage1[food_supply_stage=="Storage" & basketItem2=="maize"]),
ne_storage_maize=sum(food_supply_stage=="Storage" & basketItem2=="maize"),
loss_transport_maize=mean(loss_percentage1[food_supply_stage=="Transport" & basketItem2=="maize"]),
se_transport_maize=std.error(loss_percentage1[food_supply_stage=="Transport" & basketItem2=="maize"]),
ne_transport_maize=sum(food_supply_stage=="Transport" & basketItem2=="maize"),
loss_farm_rice=mean(loss_percentage1[food_supply_stage=="Farm" & basketItem2=="rice"]),
se_farm_rice=std.error(loss_percentage1[food_supply_stage=="Farm" & basketItem2=="rice"]),
ne_farm_rice=sum(food_supply_stage=="Farm" & basketItem2=="rice"),
loss_harvest_rice=mean(loss_percentage1[food_supply_stage=="Harvest" & basketItem2=="rice"]),
se_harvest_rice=std.error(loss_percentage1[food_supply_stage=="Harvest" & basketItem2=="rice"]),
ne_harvest_rice=sum(food_supply_stage=="Harvest" & basketItem2=="rice"),
loss_storage_rice=mean(loss_percentage1[food_supply_stage=="Storage" & basketItem2=="rice"]),
se_storage_rice=std.error(loss_percentage1[food_supply_stage=="Storage" & basketItem2=="rice"]),
ne_storage_rice=sum(food_supply_stage=="Storage" & basketItem2=="rice"),
loss_transport_rice=mean(loss_percentage1[food_supply_stage=="Transport" & basketItem2=="rice"]),
se_transport_rice=std.error(loss_percentage1[food_supply_stage=="Transport" & basketItem2=="rice"]),
ne_transport_rice=sum(food_supply_stage=="Transport" & basketItem2=="rice"),
loss_farm_cereals=mean(loss_percentage1[food_supply_stage=="Farm" & basketItem2=="cereals"]),
se_farm_cereals=std.error(loss_percentage1[food_supply_stage=="Farm" & basketItem2=="cereals"]),
ne_farm_cereals=sum(food_supply_stage=="Farm" & basketItem2=="cereals"),
loss_harvest_cereals=mean(loss_percentage1[food_supply_stage=="Harvest" & basketItem2=="cereals"]),
se_harvest_cereals=std.error(loss_percentage1[food_supply_stage=="Harvest" & basketItem2=="cereals"]),
ne_harvest_cereals=sum(food_supply_stage=="Harvest" & basketItem2=="cereals"),
loss_storage_cereals=mean(loss_percentage1[food_supply_stage=="Storage" & basketItem2=="cereals"]),
se_storage_cereals=std.error(loss_percentage1[food_supply_stage=="Storage" & basketItem2=="cereals"]),
ne_storage_cereals=sum(food_supply_stage=="Storage" & basketItem2=="cereals"),
loss_transport_cereals=mean(loss_percentage1[food_supply_stage=="Transport" & basketItem2=="cereals"]),
se_transport_cereals=std.error(loss_percentage1[food_supply_stage=="Transport" & basketItem2=="cereals"]),
ne_transport_cereals=sum(food_supply_stage=="Transport" & basketItem2=="cereals"),
loss_farm_fruits=mean(loss_percentage1[food_supply_stage=="Farm" & basketItem2=="fruits"]),
se_farm_fruits=std.error(loss_percentage1[food_supply_stage=="Farm" & basketItem2=="fruits"]),
ne_farm_fruits=sum(food_supply_stage=="Farm" & basketItem2=="fruits"),
loss_harvest_fruits=mean(loss_percentage1[food_supply_stage=="Harvest" & basketItem2=="fruits"]),
se_harvest_fruits=std.error(loss_percentage1[food_supply_stage=="Harvest" & basketItem2=="fruits"]),
ne_harvest_fruits=sum(food_supply_stage=="Harvest" & basketItem2=="fruits"),
loss_storage_fruits=mean(loss_percentage1[food_supply_stage=="Storage" & basketItem2=="fruits"]),
se_storage_fruits=std.error(loss_percentage1[food_supply_stage=="Storage" & basketItem2=="fruits"]),
ne_storage_fruits=sum(food_supply_stage=="Storage" & basketItem2=="fruits"),
loss_transport_fruits=mean(loss_percentage1[food_supply_stage=="Transport" & basketItem2=="fruits"]),
se_transport_fruits=std.error(loss_percentage1[food_supply_stage=="Transport" & basketItem2=="fruits"]),
ne_transport_fruits=sum(food_supply_stage=="Transport" & basketItem2=="fruits"),
loss_farm_roots=mean(loss_percentage1[food_supply_stage=="Farm" & basketItem2=="fruits"]),
se_farm_roots=std.error(loss_percentage1[food_supply_stage=="Farm" & basketItem2=="roots"]),
ne_farm_roots=sum(food_supply_stage=="Farm" & basketItem2=="roots"),
loss_harvest_roots=mean(loss_percentage1[food_supply_stage=="Harvest" & basketItem2=="fruits"]),
se_harvest_roots=std.error(loss_percentage1[food_supply_stage=="Harvest" & basketItem2=="roots"]),
ne_harvest_roots=sum(food_supply_stage=="Harvest" & basketItem2=="roots"),
loss_storage_roots=mean(loss_percentage1[food_supply_stage=="Storage" & basketItem2=="fruits"]),
se_storage_roots=std.error(loss_percentage1[food_supply_stage=="Storage" & basketItem2=="roots"]),
ne_storage_roots=sum(food_supply_stage=="Storage" & basketItem2=="roots"),
loss_transport_roots=mean(loss_percentage1[food_supply_stage=="Transport" & basketItem2=="fruits"]),
se_transport_roots=std.error(loss_percentage1[food_supply_stage=="Transport" & basketItem2=="roots"]),
ne_transport_roots=sum(food_supply_stage=="Transport" & basketItem2=="roots"),
gni_mean = mean(gni),
se_gni=std.error(gni),
ne_gni=n(),
agriShr_mean = mean(agriShr),
se_agriShr=std.error(agriShr),
ne_agriShr=n(),
agriEmp_mean = mean(agriEmp),
se_agriEmp=std.error(agriEmp),
ne_agriEmp=n(),
years_of_schooling_mean = mean(msch),
se_msch=std.error(msch),
ne_msch=n(),
electricityRural_mean = mean(electricityRural),
se_electricityRural=std.error(electricityRural),
ne_electricityRural=n(),
phoneSub_mean = mean(phoneSub),
se_phoneSub=std.error(phoneSub),
ne_phoneSub=n(),
polStab_mean = mean(polStab),
se_polStab=std.error(polStab),
ne_polStab=n(),
export_mean = mean(export),
se_export=std.error(export),
ne_export=n())
#median_incLevel_num = median(as.numeric(factor(incLevel, levels = c("L", "M"))))) #%>%
#st_drop_geometry()
write.csv(mean_se_descriptive,"/Volumes/chrised1/Papers/Food Loss/Data/mean_se_descriptive.csv")
y <- feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName, data = foodLoss_comb_sel4)
summary(y)
#5 To create Figure 4
#Stacked BAR PLOT
foodLoss_comb_sel4 %>%
mutate(basketItem2 = fct_relevel(basketItem2,
"wheat", "maize", "rice",
"cereals", "fruits", "roots")) %>% #to reorder the x-axis
mutate(food_supply_stage = fct_relevel(food_supply_stage,
"Transport", "Storage", "Harvest", "Farm")) %>% #to reorder the y-axis
mutate(loss_percentage2=ave(loss_percentage1, by=list(food_supply_stage, basketItem2))) %>% #create a new variable which is the mean of percentage loss in specific basket item and supply chain
distinct(loss_percentage2, .keep_all = TRUE) %>% #drop duplicates
ggplot(aes(x=basketItem2, y=loss_percentage2, fill=food_supply_stage)) + #the fill is to create stack
geom_bar(position="stack", stat = "identity") +
scale_fill_viridis_d() + #to add colorblind friendly color
labs(y="Loss percentage", x = "Commodities") +
scale_x_discrete(labels=c("wheat"="Wheat", "maize"="Maize", "rice"="Rice", "cereals"="Other cereals & pulses",
"fruits"="Fruits & vegetables", "roots"="Roots, tubers, & oil-bearing crops")) + #to rename X-axis value
labs(fill="Value chain stages") + #to change the legend label
theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(),
panel.background = element_blank(), axis.line = element_line(colour = "black"),
axis.text.x = element_text(angle =45, hjust =1)) #to remove the background but not the x and y line and to tilt the x label
ggsave("revBarPlot.pdf")
#coefficient etc from the model
modelCoef <- broom::tidy(y)
modelGlance <- broom::glance(y)
#combine
modelCoef <- modelCoef %>%
bind_cols(modelGlance)
#to save them
pool <- paste0("/Volumes/T213/T20702/work/chrised1/Papers/Food Loss/Data/Results","_",Sys.Date(),".csv")
write.csv(modelCoef, "revResults_pool.csv")
#6. regression all commodities and stages based on different income level (TABLE 3)
model_income <- list(
"All" = model_all <- foodLoss_comb_sel4 %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Low-income" = model_low <- foodLoss_comb_sel4 %>%
filter(incLevel=="L") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Middle- and high-income" = model_high <- foodLoss_comb_sel4 %>%
filter(incLevel!="L") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName)
)
model_income2 <- modelsummary(model_income, stars=T, coef_map = c("ln_gni" = "GNI per capita (log)", "agriShr" = "Agriculture share of GDP", "agriEmp" = "Employment in agriculture",
"msch" = "Years of education", "electricityRural" = "Access to electricity in rural area", "phoneSub" = "Mobile cellular subscription",
"polStab" = "Political stability", "export" = "Export volume index"),
output = "flextable")
model_income2
# Create the table for the feols model
save_as_docx(model_income2, path = ("model_income.docx"))
#7 regression of different commodities based on different income level (Table 6)
model_crop <- list(
"Wheat" = model_low_wheat <- foodLoss_comb_sel4 %>%
filter(incLevel=="L") %>% filter(basketItem2=="wheat") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Maize" = model_low_maize <- foodLoss_comb_sel4 %>%
filter(incLevel=="L") %>% filter(basketItem2=="maize") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Rice" = model_low_rice <- foodLoss_comb_sel4 %>%
filter(incLevel=="L") %>% filter(basketItem2=="rice") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Other cereals & pulses" = model_low_cereals <- foodLoss_comb_sel4 %>%
filter(incLevel=="L") %>% filter(basketItem2=="cereals") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Fruits & vegetables" = model_low_fruits <- foodLoss_comb_sel4 %>%
filter(incLevel=="L") %>% filter(basketItem2=="fruits") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Roots, tubers, and oil crops" = model_low_roots <- foodLoss_comb_sel4 %>%
filter(incLevel=="L") %>% filter(basketItem2=="roots") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Wheat" = model_low_wheat <- foodLoss_comb_sel4 %>%
filter(incLevel!="L") %>% filter(basketItem2=="wheat") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Maize" = model_low_maize <- foodLoss_comb_sel4 %>%
filter(incLevel!="L") %>% filter(basketItem2=="maize") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Rice" = model_low_rice <- foodLoss_comb_sel4 %>%
filter(incLevel!="L") %>% filter(basketItem2=="rice") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Other cereals & pulses" = model_low_cereals <- foodLoss_comb_sel4 %>%
filter(incLevel!="L") %>% filter(basketItem2=="cereals") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Fruits & vegetables" = model_low_fruits <- foodLoss_comb_sel4 %>%
filter(incLevel!="L") %>% filter(basketItem2=="fruits") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Roots, tubers, and oil crops" = model_low_roots <- foodLoss_comb_sel4 %>%
filter(incLevel!="L") %>% filter(basketItem2=="roots") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName)
)
model_crop2 <- modelsummary(model_crop, stars=T, coef_map = c("ln_gni" = "GNI per capita (log)", "agriShr" = "Agriculture share of GDP", "agriEmp" = "Employment in agriculture",
"msch" = "Years of education", "electricityRural" = "Access to electricity in rural area", "phoneSub" = "Mobile cellular subscription",
"polStab" = "Political stability", "export" = "Export volume index"),
output = "flextable")
model_crop2
# Create the table for the feols model
save_as_docx(model_crop2, path = ("model_crop2.docx"))
#8. regression of different stages based on different income level (Table 7)
model_stage <- list(
"Farm" = model_low_farm <- foodLoss_comb_sel4 %>%
filter(incLevel=="L") %>% filter(food_supply_stage=="Farm") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Harvest" = model_low_harvest <- foodLoss_comb_sel4 %>%
filter(incLevel=="L") %>% filter(food_supply_stage=="Harvest") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Storage" = model_low_storage <- foodLoss_comb_sel4 %>%
filter(incLevel=="L") %>% filter(food_supply_stage=="Storage") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Transport" = model_low_transport <- foodLoss_comb_sel4 %>%
filter(incLevel=="L") %>% filter(food_supply_stage=="Transport") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Farm" = model_low_farm <- foodLoss_comb_sel4 %>%
filter(incLevel!="L") %>% filter(food_supply_stage=="Farm") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Harvest" = model_low_harvest <- foodLoss_comb_sel4 %>%
filter(incLevel!="L") %>% filter(food_supply_stage=="Harvest") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Storage" = model_low_storage <- foodLoss_comb_sel4 %>%
filter(incLevel!="L") %>% filter(food_supply_stage=="Storage") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Transport" = model_low_transport <- foodLoss_comb_sel4 %>%
filter(incLevel!="L") %>% filter(food_supply_stage=="Transport") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName)
)
model_stage2 <- modelsummary(model_stage, stars=T, coef_map = c("ln_gni" = "GNI per capita (log)", "agriShr" = "Agriculture share of GDP", "agriEmp" = "Employment in agriculture",
"msch" = "Years of education", "electricityRural" = "Access to electricity in rural area", "phoneSub" = "Mobile cellular subscription",
"polStab" = "Political stability", "export" = "Export volume index"),
output = "flextable")
model_stage2
# Create the table for the feols model
save_as_docx(model_stage2, path = ("model_stage2.docx"))
#9. regrssion of different commodities (table 4)
model_crop3 <- list(
"Wheat" = model_low_wheat <- foodLoss_comb_sel4 %>%
filter(basketItem2=="wheat") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Maize" = model_low_maize <- foodLoss_comb_sel4 %>%
filter(basketItem2=="maize") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Rice" = model_low_rice <- foodLoss_comb_sel4 %>%
filter(basketItem2=="rice") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Other cereals & pulses" = model_low_cereals <- foodLoss_comb_sel4 %>%
filter(basketItem2=="cereals") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Fruits & vegetables" = model_low_fruits <- foodLoss_comb_sel4 %>%
filter(basketItem2=="fruits") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Roots, tubers, and oil crops" = model_low_fruits <- foodLoss_comb_sel4 %>%
filter(basketItem2=="roots") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName)
)
model_crop4 <- modelsummary(model_crop3, stars=T, coef_map = c("ln_gni" = "GNI per capita (log)", "agriShr" = "Agriculture share of GDP", "agriEmp" = "Employment in agriculture",
"msch" = "Years of education", "electricityRural" = "Access to electricity in rural area", "phoneSub" = "Mobile cellular subscription",
"polStab" = "Political stability", "export" = "Export volume index"),
output = "flextable")
model_crop4
# Create the table for the feols model
save_as_docx(model_crop4, path = ("model_crop4.docx"))
#10 regression of different stages (Table 5)
model_stage3 <- list(
"Farm" = model_low_farm <- foodLoss_comb_sel4 %>%
filter(food_supply_stage=="Farm") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Harvest" = model_low_harvest <- foodLoss_comb_sel4 %>%
filter(food_supply_stage=="Harvest") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Storage" = model_low_storage <- foodLoss_comb_sel4 %>%
filter(food_supply_stage=="Storage") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName),
"Transport" = model_low_transport <- foodLoss_comb_sel4 %>%
filter(food_supply_stage=="Transport") %>% feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName)
)
model_stage4 <- modelsummary(model_stage3, stars=T, coef_map = c("ln_gni" = "GNI per capita (log)", "agriShr" = "Agriculture share of GDP", "agriEmp" = "Employment in agriculture",
"msch" = "Years of education", "electricityRural" = "Access to electricity in rural area", "phoneSub" = "Mobile cellular subscription",
"polStab" = "Political stability", "export" = "Export volume index"),
output = "flextable")
model_stage4
# Create the table for the feols model
save_as_docx(model_stage4, path = ("model_stage4.docx"))
#Regression for heatmap materials
#11
#### simple correlation example with a loop based on crops----
# basketItems to be included
unique(foodLoss_comb_sel4$basketItem2)
incBasketItems <- c('wheat', 'rice', 'maize', 'cereals', 'fruits', 'roots')
# go through each combination
for (iBasket in 1:length(incBasketItems)) {
# if you want to test for certain step, uncomment these
#incBasket = 1
#incChain = 1
# apply filters to select wanted data
foodLoss_comb_sel <- foodLoss_comb_sel4 %>%
filter(basketItem2 == incBasketItems[iBasket])
# multiple linear regression between WL diffs
model <- feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName, data = foodLoss_comb_sel)
# coefficients etc from the model
revModelCoef <- broom::tidy(model)
revModelGlance <- broom::glance(model)
# combine
revModelCoef <- revModelCoef %>%
bind_cols(revModelGlance)
fileName <- paste0("/Volumes/chrised1/Papers/Food Loss/Data/Results",incBasketItems[iBasket],"_",Sys.Date(),".csv")
# write to file
write.csv( revModelCoef , fileName)
}
#12 #### simple correlation example with a loop based on stages----
# chain items to be included
unique(foodLoss_comb_sel4$food_supply_stage)
incChainSteps <- c('Farm', 'Storage', 'Harvest', 'Transport')
# go through each combination
for (iChain in 1:length(incChainSteps)) {
# if you want to test for certain step, uncomment these
#incBasket = 1
#incChain = 1
# apply filters to select wanted data
foodLoss_comb_sel2 <- foodLoss_comb_sel4 %>%
filter(food_supply_stage == incChainSteps[iChain])
# multiple linear regression between WL diffs
model <- feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName, data = foodLoss_comb_sel2)
# coefficients etc from the model
revModelCoef <- broom::tidy(model)
revModelGlance <- broom::glance(model)
# combine
revModelCoef <- revModelCoef %>%
bind_cols(revModelGlance)
fileName <- paste0("/Volumes/chrised1/Papers/Food Loss/Data/results",incChainSteps[iChain],"_",Sys.Date(),".csv")
# write to file
write.csv( revModelCoef , fileName)
}
#13 #### simple correlation example with a loop based on incLevel----
# chain items to be included
unique(foodLoss_comb_sel4$incLevel)
incIncomeSteps <- c('L', 'M')
# go through each combination
for (iIncome in 1:length(incIncomeSteps)) {
# if you want to test for certain step, uncomment these
#incBasket = 1
#incChain = 1
# apply filters to select wanted data
foodLoss_comb_sel5 <- foodLoss_comb_sel4 %>%
filter(incLevel == incIncomeSteps[iIncome])
# multiple linear regression between WL diffs
model <- feols(loss_percentage1 ~ ln_gni + agriShr + agriEmp + msch + electricityRural + phoneSub + polStab + export + regionalName + as.factor(year), cluster = ~ regionalName, data = foodLoss_comb_sel5)
# coefficients etc from the model
revModelCoef <- broom::tidy(model)
revModelGlance <- broom::glance(model)
# combine
revModelCoef <- revModelCoef %>%
bind_cols(revModelGlance)
fileName <- paste0("/Volumes/chrised1/Papers/Food Loss/Data/Results",incIncomeSteps[iIncome],"_",Sys.Date(),".csv")
# write to file
write.csv( revModelCoef , fileName)
}