-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatrix.hs
712 lines (640 loc) · 22.8 KB
/
Matrix.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
-- | Matrix datatype and operations.
--
-- Every provided example has been tested.
module Matrix (
-- * Matrix type
Matrix , prettyMatrix
, nrows , ncols
, forceMatrix
-- * Builders
, matrix
, fromList , fromLists
, rowVector
, colVector
-- ** Special matrices
, zero
, identity
, permMatrix
-- * Accessing
, getElem , (!)
, getRow , getCol
, getDiag
-- * Manipulating matrices
, setElem
, transpose , extendTo
, mapRow
-- * Submatrices
-- ** Splitting blocks
, submatrix
, minorMatrix
, splitBlocks
-- ** Joining blocks
, (<|>) , (<->)
, joinBlocks
-- * Matrix multiplication
-- ** About matrix multiplication
-- $mult
-- ** Functions
, multStd
, multStrassen
, multStrassenMixed
-- * Linear transformations
, scaleMatrix
, scaleRow
, combineRows
, switchRows
-- * Decompositions
, luDecomp
-- * Properties
, trace , diagProd
-- ** Determinants
, detLaplace
, detLU
) where
import Data.Monoid
import Control.DeepSeq
import qualified Data.Vector as V
import qualified Data.Vector.Mutable as MV
import Control.Monad.Primitive (PrimMonad,PrimState)
import Data.List (maximumBy)
-------------------------------------------------------
-------------------------------------------------------
---- MATRIX TYPE
-- | Type of matrices.
data Matrix a = M {
nrows :: !Int -- ^ Number of rows.
, ncols :: !Int -- ^ Number of columns.
, mvect :: V.Vector (V.Vector a)
} deriving Eq
-- | Just a cool way to output the size of a matrix.
sizeStr :: Int -> Int -> String
sizeStr n m = show n ++ "x" ++ show m
-- | Display a matrix as a 'String' using the 'Show' instance of its elements.
prettyMatrix :: Show a => Matrix a -> String
prettyMatrix m@(M _ _ v) = unlines
[ "( " <> unwords (fmap (\j -> fill mx $ show $ m ! (i,j)) [1..ncols m]) <> " )" | i <- [1..nrows m] ]
where
mx = V.maximum $ fmap (V.maximum . fmap (length . show)) v
fill k str = replicate (k - length str) ' ' ++ str
instance Show a => Show (Matrix a) where
show = prettyMatrix
instance NFData a => NFData (Matrix a) where
rnf (M _ _ v) = rnf v
-- | /O(rows*cols)/. Similar to 'V.force', drop any extra memory.
--
-- Useful when using 'submatrix' from a big matrix.
forceMatrix :: Matrix a -> Matrix a
forceMatrix (M n m v) = M n m $ V.map V.force $ V.force v
-------------------------------------------------------
-------------------------------------------------------
---- BUILDERS
-- | /O(rows*cols)/. The zero matrix of the given size.
--
-- > zero n m =
-- > n
-- > 1 ( 0 0 ... 0 0 )
-- > 2 ( 0 0 ... 0 0 )
-- > ( ... )
-- > ( 0 0 ... 0 0 )
-- > n ( 0 0 ... 0 0 )
zero :: Num a =>
Int -- ^ Rows
-> Int -- ^ Columns
-> Matrix a
zero n m = M n m $ V.replicate n $ V.replicate m 0
-- | /O(rows*cols)/. Generate a matrix from a generator function.
-- Example of usage:
--
-- > ( 1 0 -1 -2 )
-- > ( 3 2 1 0 )
-- > ( 5 4 3 2 )
-- > matrix 4 4 $ \(i,j) -> 2*i - j = ( 7 6 5 4 )
matrix :: Int -- ^ Rows
-> Int -- ^ Columns
-> ((Int,Int) -> a) -- ^ Generator function
-> Matrix a
matrix n m f = M n m $ V.generate n $ \i -> V.generate m $ \j -> f (i+1,j+1)
-- | /O(rows*cols)/. Identity matrix of the given order.
--
-- > identity n =
-- > n
-- > 1 ( 1 0 ... 0 0 )
-- > 2 ( 0 1 ... 0 0 )
-- > ( ... )
-- > ( 0 0 ... 1 0 )
-- > n ( 0 0 ... 0 1 )
--
identity :: Num a => Int -> Matrix a
identity n = matrix n n $ \(i,j) -> if i == j then 1 else 0
-- | Create a matrix from a non-empty list given the desired size.
-- The list must have at least /rows*cols/ elements.
-- An example:
--
-- > ( 1 2 3 )
-- > ( 4 5 6 )
-- > fromList 3 3 [1..] = ( 7 8 9 )
--
fromList :: Int -- ^ Rows
-> Int -- ^ Columns
-> [a] -- ^ List of elements
-> Matrix a
fromList n m xs = fromLists $ go 1 xs
where
go i ys = if i > n
then []
else let (r,zs) = splitAt m ys
in r : go (succ i) zs
-- | Create a matrix from an non-empty list of non-empty lists.
-- /Each list must have the same number of elements/.
-- For example:
--
-- > fromLists [ [1,2,3] ( 1 2 3 )
-- > , [4,5,6] ( 4 5 6 )
-- > , [7,8,9] ] = ( 7 8 9 )
--
fromLists :: [[a]] -> Matrix a
-- Requires further optimization.
fromLists xss = M (length xss) (length $ head xss) $ V.fromList $ fmap V.fromList xss
-- | /O(1)/. Represent a vector as a one row matrix.
rowVector :: V.Vector a -> Matrix a
rowVector v = M 1 (V.length v) $ V.singleton v
-- | /O(rows)/. Represent a vector as a one column matrix.
colVector :: V.Vector a -> Matrix a
colVector v = M (V.length v) 1 $ V.map V.singleton v
-- | /O(rows*cols)/. Permutation matrix.
--
-- > permMatrix n i j =
-- > i j n
-- > 1 ( 1 0 ... 0 ... 0 ... 0 0 )
-- > 2 ( 0 1 ... 0 ... 0 ... 0 0 )
-- > ( ... ... ... )
-- > i ( 0 0 ... 0 ... 1 ... 0 0 )
-- > ( ... ... ... )
-- > j ( 0 0 ... 1 ... 0 ... 0 0 )
-- > ( ... ... ... )
-- > ( 0 0 ... 0 ... 0 ... 1 0 )
-- > n ( 0 0 ... 0 ... 0 ... 0 1 )
--
-- When @i == j@ it reduces to 'identity' @n@.
--
permMatrix :: Num a
=> Int -- ^ Size of the matrix.
-> Int -- ^ Permuted row 1.
-> Int -- ^ Permuted row 2.
-> Matrix a -- ^ Permutation matrix.
permMatrix n r1 r2 | r1 == r2 = identity n
permMatrix n r1 r2 = matrix n n f
where
f (i,j)
| i == r1 = if j == r2 then 1 else 0
| i == r2 = if j == r1 then 1 else 0
| i == j = 1
| otherwise = 0
-------------------------------------------------------
-------------------------------------------------------
---- ACCESSING
-- | /O(1)/. Get an element of a matrix.
getElem :: Int -- ^ Row
-> Int -- ^ Column
-> Matrix a -- ^ Matrix
-> a
getElem i j (M n m v)
| i > n || j > m = error $ "Trying to get the " ++ show (i,j) ++ " element from a "
++ sizeStr n m ++ " matrix."
| otherwise = (v V.! (i-1)) V.! (j-1)
-- | Short alias for 'getElem'.
(!) :: Matrix a -> (Int,Int) -> a
m ! (i,j) = getElem i j m
-- | /O(1)/. Get a row of a matrix as a vector.
getRow :: Int -> Matrix a -> V.Vector a
getRow i (M _ _ vs) = vs V.! (i-1)
-- | /O(rows)/. Get a column of a matrix as a vector.
getCol :: Int -> Matrix a -> V.Vector a
getCol j a@(M n _ _) = V.generate n $ \i -> a ! (i+1,j)
-- | /O(min rows cols)/. Diagonal of a /not necessarily square/ matrix.
getDiag :: Matrix a -> V.Vector a
getDiag m = V.generate k $ \i -> m ! (i+1,i+1)
where
k = min (nrows m) (ncols m)
-------------------------------------------------------
-------------------------------------------------------
---- MANIPULATING MATRICES
msetElem:: PrimMonad m => a -> (Int,Int) -> MV.MVector (PrimState m) (V.Vector a) -> m ()
msetElem x (i,j) m = do
r <- MV.read m (i-1)
MV.write m (i-1) $ V.modify (\mv -> MV.write mv (j-1) x) r
-- | /O(1)/. Replace the value of a cell in a matrix.
setElem :: a -- ^ New value.
-> (Int,Int) -- ^ Position to replace.
-> Matrix a -- ^ Original matrix.
-> Matrix a -- ^ Matrix with the given position replaced with the given value.
setElem x p (M n m vs) = M n m $ V.modify (msetElem x p) vs
-- | /O(rows*cols)/. The transpose of a matrix.
-- Example:
--
-- > ( 1 2 3 ) ( 1 4 7 )
-- > ( 4 5 6 ) ( 2 5 8 )
-- > transpose ( 7 8 9 ) = ( 3 6 9 )
transpose :: Matrix a -> Matrix a
transpose m = matrix (ncols m) (nrows m) $ \(i,j) -> m ! (j,i)
-- | Extend a matrix to a given size adding zeroes.
-- If the matrix already has the required size, nothing happens.
-- The matrix is /never/ reduced in size.
-- Example:
--
-- > ( 1 2 3 0 0 )
-- > ( 1 2 3 ) ( 4 5 6 0 0 )
-- > ( 4 5 6 ) ( 7 8 9 0 0 )
-- > extendTo 4 5 ( 7 8 9 ) = ( 0 0 0 0 0 )
extendTo :: Num a
=> Int -- ^ Minimal number of rows.
-> Int -- ^ Minimal number of columns.
-> Matrix a -> Matrix a
extendTo n m a = a''
where
n' = n - nrows a
a' = if n' <= 0 then a else a <-> zero n' (ncols a)
m' = m - ncols a
a'' = if m' <= 0 then a' else a' <|> zero (nrows a') m'
-------------------------------------------------------
-------------------------------------------------------
---- WORKING WITH BLOCKS
-- | /O(r2-r1)/. Extract a submatrix given row and column limits.
-- Example:
--
-- > ( 1 2 3 )
-- > ( 4 5 6 ) ( 2 3 )
-- > submatrix 1 2 2 3 ( 7 8 9 ) = ( 5 6 )
submatrix :: Int -- ^ Starting row /r1/
-> Int -- ^ Ending row /r2/
-> Int -- ^ Starting column
-> Int -- ^ Ending column
-> Matrix a
-> Matrix a
{-# INLINE submatrix #-}
submatrix r1 r2 c1 c2 (M _ _ vs) = M r' c' $ V.map (V.unsafeSlice (c1-1) c') $ V.unsafeSlice (r1-1) r' vs
where
r' = r2-r1+1
c' = c2-c1+1
-- | Remove a row and a column from a matrix.
-- Example:
--
-- > ( 1 2 3 )
-- > ( 4 5 6 ) ( 1 3 )
-- > minorMatrix 2 2 ( 7 8 9 ) = ( 7 9 )
minorMatrix :: Int -- ^ Row @r@ to remove.
-> Int -- ^ Column @c@ to remove.
-> Matrix a -- ^ Original matrix.
-> Matrix a -- ^ Matrix with row @r@ and column @c@ removed.
-- Requires further optimization.
minorMatrix r c (M n m v) = M (n-1) (m-1) $
V.map (V.ifilter $ \j _ -> j+1 /= c) $
V.ifilter (\i _ -> i+1 /= r) v
-- | Make a block-partition of a matrix using a given element as reference.
-- The element will stay in the bottom-right corner of the top-left corner matrix.
--
-- > ( ) ( | )
-- > ( ) ( ... | ... )
-- > ( x ) ( x | )
-- > splitBlocks i j ( ) = (-------------) , where x = a_{i,j}
-- > ( ) ( | )
-- > ( ) ( ... | ... )
-- > ( ) ( | )
--
-- Note that some blocks can end up empty. We use the following notation for these blocks:
--
-- > ( TL | TR )
-- > (---------)
-- > ( BL | BR )
--
-- Where T = Top, B = Bottom, L = Left, R = Right.
--
-- Implementation is done via slicing of vectors.
splitBlocks :: Int -- ^ Row of the splitting element.
-> Int -- ^ Column of the splitting element.
-> Matrix a -- ^ Matrix to split.
-> (Matrix a,Matrix a
,Matrix a,Matrix a) -- ^ (TL,TR,BL,BR)
{-# INLINE splitBlocks #-}
splitBlocks i j a@(M n m _) = ( submatrix 1 i 1 j a , submatrix 1 i (j+1) m a
, submatrix (i+1) n 1 j a , submatrix (i+1) n (j+1) m a )
-- | Join blocks of the form detailed in 'splitBlocks'.
joinBlocks :: (Matrix a,Matrix a
,Matrix a,Matrix a)
-> Matrix a
{-# INLINE joinBlocks #-}
joinBlocks (tl,tr,bl,br) = (tl <|> tr)
<->
(bl <|> br)
-- | Horizontally join two matrices. Visually:
--
-- > ( A ) <|> ( B ) = ( A | B )
--
-- Where both matrices /A/ and /B/ have the same number of rows.
(<|>) :: Matrix a -> Matrix a -> Matrix a
{-# INLINE (<|>) #-}
(M n m vs) <|> (M n' m' vs')
| n /= n' = error $ "Horizontal join of " ++ sizeStr n m ++ " and "
++ sizeStr n' m' ++ " matrices."
| otherwise = M n (m+m') $ V.zipWith (V.++) vs vs'
-- | Vertically join two matrices. Visually:
--
-- > ( A )
-- > ( A ) <-> ( B ) = ( - )
-- > ( B )
--
-- Where both matrices /A/ and /B/ have the same number of columns.
(<->) :: Matrix a -> Matrix a -> Matrix a
{-# INLINE (<->) #-}
(M n m v) <-> (M n' m' v')
| m /= m' = error $ "Vertical join of " ++ sizeStr n m ++ " and "
++ sizeStr n' m' ++ " matrices."
| otherwise = M (n+n') m $ v V.++ v'
-------------------------------------------------------
-------------------------------------------------------
---- MATRIX MULTIPLICATION
{- $mult
Three methods are provided for matrix multiplication.
* 'multStd':
Matrix multiplication following directly the definition.
This is the best choice when you know for sure that your
matrices are small.
* 'multStrassen':
Matrix multiplication following the Strassen's algorithm.
Complexity grows slower but also some work is added
partitioning the matrix. Also, it only works on square
matrices of order @2^n@, so if this condition is not
met, it is zero-padded until this is accomplished.
Therefore, its use it is not recommended.
* 'multStrassenMixed':
This function mixes the 'multStd' and 'multStrassen' methods.
It provides a better performance in general. Method @(@'*'@)@
of the 'Num' class uses this function because it gives the best
average performance. However, if you know for sure that your matrices are
small, you should use 'multStd' instead, since
'multStrassenMixed' is going to switch to that function anyway.
-}
-- | Standard matrix multiplication by definition.
multStd :: Num a => Matrix a -> Matrix a -> Matrix a
multStd a1@(M n m _) a2@(M n' m' _)
-- Checking that sizes match...
| m /= n' = error $ "Multiplication of " ++ sizeStr n m ++ " and "
++ sizeStr n' m' ++ " matrices."
| otherwise = multStd_ a1 a2
-- | Standard matrix multiplication by definition, without checking if sizes match.
multStd_ :: Num a => Matrix a -> Matrix a -> Matrix a
multStd_ a1@(M n m _) a2@(M _ m' _) = matrix n m' $ \(i,j) -> sum [ a1 ! (i,k) * a2 ! (k,j) | k <- [1 .. m] ]
first :: (a -> Bool) -> [a] -> a
first f = go
where
go (x:xs) = if f x then x else go xs
go [] = error "first: no element match the condition."
-- | Strassen's algorithm over square matrices of order @2^n@.
strassen :: Num a => Matrix a -> Matrix a -> Matrix a
-- Trivial 1x1 multiplication.
strassen (M 1 1 v) (M 1 1 v') = M 1 1 $ V.zipWith (V.zipWith (*)) v v'
-- General case guesses that the input matrices are square matrices
-- whose order is a power of two.
strassen a b = joinBlocks (c11,c12,c21,c22)
where
-- Size of the subproblem is halved.
n = div (nrows a) 2
-- Split of the original problem into smaller subproblems.
(a11,a12,a21,a22) = splitBlocks n n a
(b11,b12,b21,b22) = splitBlocks n n b
-- The seven Strassen's products.
p1 = strassen (a11 + a22) (b11 + b22)
p2 = strassen (a21 + a22) b11
p3 = strassen a11 (b12 - b22)
p4 = strassen a22 (b21 - b11)
p5 = strassen (a11 + a12) b22
p6 = strassen (a21 - a11) (b11 + b12)
p7 = strassen (a12 - a22) (b21 + b22)
-- Merging blocks
c11 = p1 + p4 - p5 + p7
c12 = p3 + p5
c21 = p2 + p4
c22 = p1 - p2 + p3 + p6
-- | Strassen's matrix multiplication.
multStrassen :: Num a => Matrix a -> Matrix a -> Matrix a
multStrassen a1@(M n m _) a2@(M n' m' _)
| m /= n' = error $ "Multiplication of " ++ sizeStr n m ++ " and "
++ sizeStr n' m' ++ " matrices."
| otherwise =
let mx = maximum [n,m,n',m']
n2 = first (>= mx) $ fmap (2^) [(0 :: Int)..]
b1 = extendTo n2 n2 a1
b2 = extendTo n2 n2 a2
in submatrix 1 n 1 m' $ strassen b1 b2
strmixFactor :: Int
strmixFactor = 75
-- | Strassen's mixed algorithm.
strassenMixed :: Num a => Matrix a -> Matrix a -> Matrix a
strassenMixed a@(M r _ _) b
| r < strmixFactor = multStd_ a b
| odd r = let r' = r + 1
a' = extendTo r' r' a
b' = extendTo r' r' b
in submatrix 1 r 1 r $ strassenMixed a' b'
| otherwise = joinBlocks (c11,c12,c21,c22)
where
-- Size of the subproblem is halved.
n = quot r 2
-- Split of the original problem into smaller subproblems.
(a11,a12,a21,a22) = splitBlocks n n a
(b11,b12,b21,b22) = splitBlocks n n b
-- The seven Strassen's products.
p1 = strassenMixed (a11 + a22) (b11 + b22)
p2 = strassenMixed (a21 + a22) b11
p3 = strassenMixed a11 (b12 - b22)
p4 = strassenMixed a22 (b21 - b11)
p5 = strassenMixed (a11 + a12) b22
p6 = strassenMixed (a21 - a11) (b11 + b12)
p7 = strassenMixed (a12 - a22) (b21 + b22)
-- Merging blocks
c11 = p1 + p4 - p5 + p7
c12 = p3 + p5
c21 = p2 + p4
c22 = p1 - p2 + p3 + p6
-- | Mixed Strassen's matrix multiplication.
multStrassenMixed :: Num a => Matrix a -> Matrix a -> Matrix a
multStrassenMixed a1@(M n m _) a2@(M n' m' _)
| m /= n' = error $ "Multiplication of " ++ sizeStr n m ++ " and "
++ sizeStr n' m' ++ " matrices."
| n < strmixFactor = multStd_ a1 a2
| otherwise =
let mx = maximum [n,m,n',m']
n2 = if even mx then mx else mx+1
b1 = extendTo n2 n2 a1
b2 = extendTo n2 n2 a2
in submatrix 1 n 1 m' $ strassenMixed b1 b2
-------------------------------------------------------
-------------------------------------------------------
---- FUNCTOR INSTANCE
instance Functor Matrix where
fmap f (M n m v) = M n m $ fmap (fmap f) v
-- | Map a function over a row.
-- Example:
--
-- > ( 1 2 3 ) ( 1 2 3 )
-- > ( 4 5 6 ) ( 5 6 7 )
-- > mapRow (\_ x -> x + 1) 2 ( 7 8 9 ) = ( 7 8 9 )
--
mapRow :: (Int -> a -> a) -- ^ Function takes the current column as additional argument.
-> Int -- ^ Row to map.
-> Matrix a -> Matrix a
mapRow f r (M n m v) =
M n m $ V.imap (\i rx -> if i+1 == r then V.imap (f . succ) rx else rx) v
-------------------------------------------------------
-------------------------------------------------------
---- NUMERICAL INSTANCE
instance Num a => Num (Matrix a) where
fromInteger = M 1 1 . V.singleton . V.singleton . fromInteger
negate = fmap negate
abs = fmap abs
signum = fmap signum
-- Addition of matrices.
(M n m v) + (M n' m' v')
-- Checking that sizes match...
| n /= n' || m /= m' = error $ "Addition of " ++ sizeStr n m ++ " and "
++ sizeStr n' m' ++ " matrices."
-- Otherwise, trivial zip.
| otherwise = M n m $ V.zipWith (V.zipWith (+)) v v'
-- Multiplication of matrices.
(*) = multStrassenMixed
-------------------------------------------------------
-------------------------------------------------------
---- TRANSFORMATIONS
-- | Scale a matrix by a given factor.
-- Example:
--
-- > ( 1 2 3 ) ( 2 4 6 )
-- > ( 4 5 6 ) ( 8 10 12 )
-- > scaleMatrix 2 ( 7 8 9 ) = ( 14 16 18 )
scaleMatrix :: Num a => a -> Matrix a -> Matrix a
scaleMatrix = fmap . (*)
-- | Scale a row by a given factor.
-- Example:
--
-- > ( 1 2 3 ) ( 1 2 3 )
-- > ( 4 5 6 ) ( 8 10 12 )
-- > scaleRow 2 2 ( 7 8 9 ) = ( 7 8 9 )
scaleRow :: Num a => a -> Int -> Matrix a -> Matrix a
scaleRow = mapRow . const . (*)
-- | Add to one row a scalar multiple of other row.
-- Example:
--
-- > ( 1 2 3 ) ( 1 2 3 )
-- > ( 4 5 6 ) ( 6 9 12 )
-- > combineRows 2 2 1 ( 7 8 9 ) = ( 7 8 9 )
combineRows :: Num a => Int -> a -> Int -> Matrix a -> Matrix a
combineRows r1 l r2 m = mapRow (\j x -> x + l * getElem r2 j m) r1 m
-- | Switch two rows of a matrix.
-- Example:
--
-- > ( 1 2 3 ) ( 4 5 6 )
-- > ( 4 5 6 ) ( 1 2 3 )
-- > switchRows 1 2 ( 7 8 9 ) = ( 7 8 9 )
switchRows :: Int -- ^ Row 1.
-> Int -- ^ Row 2.
-> Matrix a -- ^ Original matrix.
-> Matrix a -- ^ Matrix with rows 1 and 2 switched.
switchRows r1 r2 (M n m vs) = M n m $ V.modify (\mv -> MV.swap mv (r1-1) (r2-1)) vs
-------------------------------------------------------
-------------------------------------------------------
---- DECOMPOSITIONS
-- LU DECOMPOSITION
-- | Matrix LU decomposition with /partial pivoting/.
-- The result for a matrix /M/ is given in the format /(U,L,P,d)/ where:
--
-- * /U/ is an upper triangular matrix.
--
-- * /L/ is an /unit/ lower triangular matrix.
--
-- * /P/ is a permutation matrix.
--
-- * /d/ is the determinant of /P/.
--
-- * /PM = LU/.
--
-- These properties are only guaranteed when the input matrix is invertible.
-- An additional property matches thanks to the strategy followed for pivoting:
--
-- * /L_(i,j)/ <= 1, for all /i,j/.
--
-- This follows from the maximal property of the selected pivots, which also
-- leads to a better numerical stability of the algorithm.
--
-- Example:
--
-- > ( 1 2 0 ) ( 2 0 2 ) ( 1 0 0 ) ( 0 0 1 )
-- > ( 0 2 1 ) ( 0 2 -1 ) ( 1/2 1 0 ) ( 1 0 0 )
-- > luDecomp ( 2 0 2 ) = ( ( 0 0 2 ) , ( 0 1 1 ) , ( 0 1 0 ) , 1 )
luDecomp :: (Ord a, Fractional a) => Matrix a -> (Matrix a,Matrix a,Matrix a,a)
luDecomp a = recLUDecomp a i i 1 1 n
where
n = nrows a
i = identity n
recLUDecomp :: (Ord a, Fractional a)
=> Matrix a -- ^ U
-> Matrix a -- ^ L
-> Matrix a -- ^ P
-> a -- ^ d
-> Int -- ^ Current row
-> Int -- ^ Total rows
-> (Matrix a,Matrix a,Matrix a,a)
recLUDecomp u l p d k n =
if k == n then (u,l,p,d)
else recLUDecomp u'' l'' p' d' (k+1) n
where
-- Pivot strategy: maximum value in absolute value below the current row.
i = maximumBy (\x y -> compare (abs $ u ! (x,k)) (abs $ u ! (y,k))) [ k .. n ]
-- Switching to place pivot in current row.
u' = switchRows k i u
l' = M n n $
V.modify (\mv -> mapM_ (\j -> do
msetElem (l ! (k,j)) (i,j) mv
msetElem (l ! (i,j)) (k,j) mv
) [1 .. k-1] ) $ mvect l
p' = switchRows k i p
-- Permutation determinant
d' = if i == k then d else negate d
-- Cancel elements below the pivot.
(u'',l'') = go u' l' (k+1)
ukk = u' ! (k,k)
go u_ l_ j =
if j > n then (u_,l_)
else let x = (u_ ! (j,k)) / ukk
in go (combineRows j (-x) k u_) (setElem x (j,k) l_) (j+1)
-------------------------------------------------------
-------------------------------------------------------
---- PROPERTIES
-- | Sum of the elements in the diagonal. See also 'getDiag'.
-- Example:
--
-- > ( 1 2 3 )
-- > ( 4 5 6 )
-- > trace ( 7 8 9 ) = 15
trace :: Num a => Matrix a -> a
trace = V.sum . getDiag
-- | Product of the elements in the diagonal. See also 'getDiag'.
-- Example:
--
-- > ( 1 2 3 )
-- > ( 4 5 6 )
-- > diagProd ( 7 8 9 ) = 45
diagProd :: Num a => Matrix a -> a
diagProd = V.product . getDiag
-- DETERMINANT
-- | Matrix determinant using Laplace expansion.
-- If the elements of the 'Matrix' are instance of 'Ord' and 'Fractional'
-- consider to use 'detLU' in order to obtain better performance.
detLaplace :: Num a => Matrix a -> a
detLaplace (M 1 1 v) = V.head (V.head v)
detLaplace m =
sum [ (-1)^(i-1) * m ! (i,1) * detLaplace (minorMatrix i 1 m) | i <- [1 .. nrows m] ]
-- | Matrix determinant using LU decomposition.
detLU :: (Ord a, Fractional a) => Matrix a -> a
detLU m = d * diagProd u
where
(u,_,_,d) = luDecomp m