-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathutil.py
420 lines (367 loc) · 18.2 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
import torch
import copy
import random
import networkx as nx
import numpy as np
from torch_geometric.utils import convert
from loader import graph_data_obj_to_nx_simple, nx_to_graph_data_obj_simple
from rdkit import Chem
from rdkit.Chem import AllChem
from loader import mol_to_graph_data_obj_simple, \
graph_data_obj_to_mol_simple
from loader import MoleculeDataset
def check_same_molecules(s1, s2):
mol1 = AllChem.MolFromSmiles(s1)
mol2 = AllChem.MolFromSmiles(s2)
return AllChem.MolToInchi(mol1) == AllChem.MolToInchi(mol2)
class NegativeEdge:
def __init__(self):
"""
Randomly sample negative edges
"""
pass
def __call__(self, data):
num_nodes = data.num_nodes
num_edges = data.num_edges
edge_set = set([str(data.edge_index[0, i].cpu().item()) + "," + str(
data.edge_index[1, i].cpu().item()) for i in
range(data.edge_index.shape[1])])
redandunt_sample = torch.randint(0, num_nodes, (2, 5 * num_edges))
sampled_ind = []
sampled_edge_set = set([])
for i in range(5 * num_edges):
node1 = redandunt_sample[0, i].cpu().item()
node2 = redandunt_sample[1, i].cpu().item()
edge_str = str(node1) + "," + str(node2)
if not edge_str in edge_set and not edge_str in sampled_edge_set and not node1 == node2:
sampled_edge_set.add(edge_str)
sampled_ind.append(i)
if len(sampled_ind) == num_edges / 2:
break
data.negative_edge_index = redandunt_sample[:, sampled_ind]
return data
class ExtractSubstructureContextPair:
def __init__(self, k, l1, l2):
"""
Randomly selects a node from the data object, and adds attributes
that contain the substructure that corresponds to k hop neighbours
rooted at the node, and the context substructures that corresponds to
the subgraph that is between l1 and l2 hops away from the
root node.
:param k:
:param l1:
:param l2:
"""
self.k = k
self.l1 = l1
self.l2 = l2
# for the special case of 0, addresses the quirk with
# single_source_shortest_path_length
if self.k == 0:
self.k = -1
if self.l1 == 0:
self.l1 = -1
if self.l2 == 0:
self.l2 = -1
def __call__(self, data, root_idx=None):
"""
:param data: pytorch geometric data object
:param root_idx: If None, then randomly samples an atom idx.
Otherwise sets atom idx of root (for debugging only)
:return: None. Creates new attributes in original data object:
data.center_substruct_idx
data.x_substruct
data.edge_attr_substruct
data.edge_index_substruct
data.x_context
data.edge_attr_context
data.edge_index_context
data.overlap_context_substruct_idx
"""
num_atoms = data.x.size()[0]
if root_idx == None:
root_idx = random.sample(range(num_atoms), 1)[0]
G = graph_data_obj_to_nx_simple(data) # same ordering as input data obj
# Get k-hop subgraph rooted at specified atom idx
substruct_node_idxes = nx.single_source_shortest_path_length(G,
root_idx,
self.k).keys()
if len(substruct_node_idxes) > 0:
substruct_G = G.subgraph(substruct_node_idxes)
substruct_G, substruct_node_map = reset_idxes(substruct_G) # need
# to reset node idx to 0 -> num_nodes - 1, otherwise data obj does not
# make sense, since the node indices in data obj must start at 0
substruct_data = nx_to_graph_data_obj_simple(substruct_G)
data.x_substruct = substruct_data.x
data.edge_attr_substruct = substruct_data.edge_attr
data.edge_index_substruct = substruct_data.edge_index
data.center_substruct_idx = torch.tensor([substruct_node_map[
root_idx]]) # need
# to convert center idx from original graph node ordering to the
# new substruct node ordering
# Get subgraphs that is between l1 and l2 hops away from the root node
l1_node_idxes = nx.single_source_shortest_path_length(G, root_idx,
self.l1).keys()
l2_node_idxes = nx.single_source_shortest_path_length(G, root_idx,
self.l2).keys()
context_node_idxes = set(l1_node_idxes).symmetric_difference(
set(l2_node_idxes))
if len(context_node_idxes) > 0:
context_G = G.subgraph(context_node_idxes)
context_G, context_node_map = reset_idxes(context_G) # need to
# reset node idx to 0 -> num_nodes - 1, otherwise data obj does not
# make sense, since the node indices in data obj must start at 0
context_data = nx_to_graph_data_obj_simple(context_G)
data.x_context = context_data.x
data.edge_attr_context = context_data.edge_attr
data.edge_index_context = context_data.edge_index
# Get indices of overlapping nodes between substruct and context,
# WRT context ordering
context_substruct_overlap_idxes = list(set(
context_node_idxes).intersection(set(substruct_node_idxes)))
if len(context_substruct_overlap_idxes) > 0:
context_substruct_overlap_idxes_reorder = [context_node_map[old_idx]
for
old_idx in
context_substruct_overlap_idxes]
# need to convert the overlap node idxes, which is from the
# original graph node ordering to the new context node ordering
data.overlap_context_substruct_idx = \
torch.tensor(context_substruct_overlap_idxes_reorder)
return data
# ### For debugging ###
# if len(substruct_node_idxes) > 0:
# substruct_mol = graph_data_obj_to_mol_simple(data.x_substruct,
# data.edge_index_substruct,
# data.edge_attr_substruct)
# print(AllChem.MolToSmiles(substruct_mol))
# if len(context_node_idxes) > 0:
# context_mol = graph_data_obj_to_mol_simple(data.x_context,
# data.edge_index_context,
# data.edge_attr_context)
# print(AllChem.MolToSmiles(context_mol))
#
# print(list(context_node_idxes))
# print(list(substruct_node_idxes))
# print(context_substruct_overlap_idxes)
# ### End debugging ###
def __repr__(self):
return '{}(k={},l1={}, l2={})'.format(self.__class__.__name__, self.k,
self.l1, self.l2)
def reset_idxes(G):
"""
Resets node indices such that they are numbered from 0 to num_nodes - 1
:param G:
:return: copy of G with relabelled node indices, mapping
"""
mapping = {}
for new_idx, old_idx in enumerate(G.nodes()):
mapping[old_idx] = new_idx
new_G = nx.relabel_nodes(G, mapping, copy=True)
return new_G, mapping
# TODO(Bowen): more unittests
class MaskAtom:
def __init__(self, num_atom_type, num_edge_type, mask_rate, mask_edge=True):
"""
Randomly masks an atom, and optionally masks edges connecting to it.
The mask atom type index is num_possible_atom_type
The mask edge type index in num_possible_edge_type
:param num_atom_type:
:param num_edge_type:
:param mask_rate: % of atoms to be masked
:param mask_edge: If True, also mask the edges that connect to the
masked atoms
"""
self.num_atom_type = num_atom_type
self.num_edge_type = num_edge_type
self.mask_rate = mask_rate
self.mask_edge = mask_edge
def __call__(self, data, masked_atom_indices=None):
"""
:param data: pytorch geometric data object. Assume that the edge
ordering is the default pytorch geometric ordering, where the two
directions of a single edge occur in pairs.
Eg. data.edge_index = tensor([[0, 1, 1, 2, 2, 3],
[1, 0, 2, 1, 3, 2]])
:param masked_atom_indices: If None, then randomly samples num_atoms
* mask rate number of atom indices
Otherwise a list of atom idx that sets the atoms to be masked (for
debugging only)
:return: None, Creates new attributes in original data object:
data.mask_node_idx
data.mask_node_label
data.mask_edge_idx
data.mask_edge_label
"""
if masked_atom_indices == None:
# sample x distinct atoms to be masked, based on mask rate. But
# will sample at least 1 atom
num_atoms = data.x.size()[0]
sample_size = int(num_atoms * self.mask_rate + 1)
masked_atom_indices = random.sample(range(num_atoms), sample_size)
# create mask node label by copying atom feature of mask atom
mask_node_labels_list = []
for atom_idx in masked_atom_indices:
mask_node_labels_list.append(data.x[atom_idx].view(1, -1))
data.mask_node_label = torch.cat(mask_node_labels_list, dim=0)
data.masked_atom_indices = torch.tensor(masked_atom_indices)
# modify the original node feature of the masked node
for atom_idx in masked_atom_indices:
data.x[atom_idx] = torch.tensor([self.num_atom_type, 0])
if self.mask_edge:
# create mask edge labels by copying edge features of edges that are bonded to
# mask atoms
connected_edge_indices = []
for bond_idx, (u, v) in enumerate(data.edge_index.cpu().numpy().T):
for atom_idx in masked_atom_indices:
if atom_idx in set((u, v)) and \
bond_idx not in connected_edge_indices:
connected_edge_indices.append(bond_idx)
if len(connected_edge_indices) > 0:
# create mask edge labels by copying bond features of the bonds connected to
# the mask atoms
mask_edge_labels_list = []
for bond_idx in connected_edge_indices[::2]: # because the
# edge ordering is such that two directions of a single
# edge occur in pairs, so to get the unique undirected
# edge indices, we take every 2nd edge index from list
mask_edge_labels_list.append(
data.edge_attr[bond_idx].view(1, -1))
data.mask_edge_label = torch.cat(mask_edge_labels_list, dim=0)
# modify the original bond features of the bonds connected to the mask atoms
for bond_idx in connected_edge_indices:
data.edge_attr[bond_idx] = torch.tensor(
[self.num_edge_type, 0])
data.connected_edge_indices = torch.tensor(
connected_edge_indices[::2])
else:
data.mask_edge_label = torch.empty((0, 2)).to(torch.int64)
data.connected_edge_indices = torch.tensor(
connected_edge_indices).to(torch.int64)
return data
def __repr__(self):
return '{}(num_atom_type={}, num_edge_type={}, mask_rate={}, mask_edge={})'.format(
self.__class__.__name__, self.num_atom_type, self.num_edge_type,
self.mask_rate, self.mask_edge)
if __name__ == "__main__":
transform = NegativeEdge()
dataset = MoleculeDataset("dataset/tox21", dataset="tox21")
transform(dataset[0])
"""
# TODO(Bowen): more unit tests
# test ExtractSubstructureContextPair
smiles = 'C#Cc1c(O)c(Cl)cc(/C=C/N)c1S'
m = AllChem.MolFromSmiles(smiles)
data = mol_to_graph_data_obj_simple(m)
root_idx = 13
# 0 hops: no substructure or context. We just test the absence of x attr
transform = ExtractSubstructureContextPair(0, 0, 0)
transform(data, root_idx)
assert not hasattr(data, 'x_substruct')
assert not hasattr(data, 'x_context')
# k > n_nodes, l1 = 0 and l2 > n_nodes: substructure and context same as
# molecule
data = mol_to_graph_data_obj_simple(m)
transform = ExtractSubstructureContextPair(100000, 0, 100000)
transform(data, root_idx)
substruct_mol = graph_data_obj_to_mol_simple(data.x_substruct,
data.edge_index_substruct,
data.edge_attr_substruct)
context_mol = graph_data_obj_to_mol_simple(data.x_context,
data.edge_index_context,
data.edge_attr_context)
assert check_same_molecules(AllChem.MolToSmiles(substruct_mol),
AllChem.MolToSmiles(context_mol))
transform = ExtractSubstructureContextPair(1, 1, 10000)
transform(data, root_idx)
# increase k from 0, and increase l1 from 1 while keeping l2 > n_nodes: the
# total number of atoms should be n_atoms
for i in range(len(m.GetAtoms())):
data = mol_to_graph_data_obj_simple(m)
print('i: {}'.format(i))
transform = ExtractSubstructureContextPair(i, i, 100000)
transform(data, root_idx)
if hasattr(data, 'x_substruct'):
n_substruct_atoms = data.x_substruct.size()[0]
else:
n_substruct_atoms = 0
print('n_substruct_atoms: {}'.format(n_substruct_atoms))
if hasattr(data, 'x_context'):
n_context_atoms = data.x_context.size()[0]
else:
n_context_atoms = 0
print('n_context_atoms: {}'.format(n_context_atoms))
assert n_substruct_atoms + n_context_atoms == len(m.GetAtoms())
# l1 < k and l2 >= k, so an overlap exists between context and substruct
data = mol_to_graph_data_obj_simple(m)
transform = ExtractSubstructureContextPair(2, 1, 3)
transform(data, root_idx)
assert hasattr(data, 'center_substruct_idx')
# check correct overlap atoms between context and substruct
# m = AllChem.MolFromSmiles('COC1=CC2=C(NC(=N2)[S@@](=O)CC2=NC=C(C)C(OC)=C2C)C=C1')
# data = mol_to_graph_data_obj_simple(m)
# root_idx = 9
# k = 1
# l1 = 1
# l2 = 2
# transform = ExtractSubstructureContextPaidata = mol_to_graph_data_obj_simple(m)r(k, l1, l2)
# transform(data, root_idx)
pass
# TODO(Bowen): more unit tests
# test MaskAtom
from loader import mol_to_graph_data_obj_simple, \
graph_data_obj_to_mol_simple
smiles = 'C#Cc1c(O)c(Cl)cc(/C=C/N)c1S'
m = AllChem.MolFromSmiles(smiles)
original_data = mol_to_graph_data_obj_simple(m)
num_atom_type = 118
num_edge_type = 5
# manually specify masked atom indices, don't mask edge
masked_atom_indices = [13, 12]
data = mol_to_graph_data_obj_simple(m)
transform = MaskAtom(num_atom_type, num_edge_type, 0.1, mask_edge=False)
transform(data, masked_atom_indices)
assert data.mask_node_label.size() == torch.Size(
(len(masked_atom_indices), 2))
assert not hasattr(data, 'mask_edge_label')
# check that the correct rows in x have been modified to be mask atom type
assert (data.x[masked_atom_indices] == torch.tensor(([num_atom_type,
0]))).all()
assert (data.mask_node_label == original_data.x[masked_atom_indices]).all()
# manually specify masked atom indices, mask edge
masked_atom_indices = [13, 12]
data = mol_to_graph_data_obj_simple(m)
transform = MaskAtom(num_atom_type, num_edge_type, 0.1, mask_edge=True)
transform(data, masked_atom_indices)
assert data.mask_node_label.size() == torch.Size(
(len(masked_atom_indices), 2))
# check that the correct rows in x have been modified to be mask atom type
assert (data.x[masked_atom_indices] == torch.tensor(([num_atom_type,
0]))).all()
assert (data.mask_node_label == original_data.x[masked_atom_indices]).all()
# check that the correct rows in edge_attr have been modified to be mask edge
# type, and the mask_edge_label are correct
rdkit_bonds = []
for atom_idx in masked_atom_indices:
bond_indices = list(AllChem.FindAtomEnvironmentOfRadiusN(m, radius=1,
rootedAtAtom=atom_idx))
for bond_idx in bond_indices:
rdkit_bonds.append(
(m.GetBonds()[bond_idx].GetBeginAtomIdx(), m.GetBonds()[
bond_idx].GetEndAtomIdx()))
rdkit_bonds.append(
(m.GetBonds()[bond_idx].GetEndAtomIdx(), m.GetBonds()[
bond_idx].GetBeginAtomIdx()))
rdkit_bonds = set(rdkit_bonds)
connected_edge_indices = []
for i in range(data.edge_index.size()[1]):
if tuple(data.edge_index.numpy().T[i].tolist()) in rdkit_bonds:
connected_edge_indices.append(i)
assert (data.edge_attr[connected_edge_indices] ==
torch.tensor(([num_edge_type, 0]))).all()
assert (data.mask_edge_label == original_data.edge_attr[
connected_edge_indices[::2]]).all() # data.mask_edge_label contains
# the unique edges (ignoring direction). The data obj has edge ordering
# such that two directions of a single edge occur in pairs, so to get the
# unique undirected edge indices, we take every 2nd edge index from list
"""