-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_sac.py
247 lines (200 loc) · 10.7 KB
/
run_sac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import argparse
import logging
import time
import gym
import d4rl
import torch
# torch.set_default_dtype(torch.float64)
import numpy as np
from itertools import count
from sac.replay_memory import ReplayMemory
from sac.sac import SAC
from ensemble import ProbEnsemble
from predict_env import PredictEnv
from sample_env import EnvSampler
# from tf_models.constructor import construct_model, format_samples_for_training
# torch.autograd.set_detect_anomaly(True)
# import wandb
from tqdm import tqdm
from utils import *
def readParser():
parser = argparse.ArgumentParser(description='SAC')
parser.add_argument('--env', default="hopper-medium-expert-v0",
help='Mujoco Gym environment (default: hopper-medium-expert-v0)')
parser.add_argument('--algo', default="sac",
help='Must be sac')
parser.add_argument('--seed', type=int, default=0, metavar='N',
help='random seed (default: 123456)')
parser.add_argument('--gamma', type=float, default=0.99, metavar='G',
help='discount factor for reward (default: 0.99)')
parser.add_argument('--tau', type=float, default=0.005, metavar='G',
help='target smoothing coefficient(τ) (default: 0.005)')
parser.add_argument('--alpha', type=float, default=0.2, metavar='G',
help='Temperature parameter α determines the relative importance of the entropy\
term against the reward (default: 0.2)')
parser.add_argument('--policy', default="Gaussian",
help='Policy Type: Gaussian | Deterministic (default: Gaussian)')
parser.add_argument('--target_update_interval', type=int, default=1, metavar='N',
help='Value target update per no. of updates per step (default: 1)')
parser.add_argument('--automatic_entropy_tuning', type=bool, default=True, metavar='G',
help='Automaically adjust α (default: False)')
parser.add_argument('--hidden_size', type=int, default=256, metavar='N',
help='hidden size (default: 256)')
parser.add_argument('--lr', type=float, default=0.0003, metavar='G',
help='learning rate (default: 0.0003)')
parser.add_argument('--num_networks', type=int, default=7, metavar='E',
help='ensemble size (default: 7)')
parser.add_argument('--num_elites', type=int, default=5, metavar='E',
help='elite size (default: 5)')
parser.add_argument('--pred_hidden_size', type=int, default=200, metavar='E',
help='hidden size for predictive model')
parser.add_argument('--reward_size', type=int, default=1, metavar='E',
help='environment reward size')
parser.add_argument('--replay_size', type=int, default=1000000, metavar='N',
help='size of replay buffer (default: 10000000)')
parser.add_argument('--epoch_length', type=int, default=1000, metavar='A',
help='steps per epoch')
parser.add_argument('--num_epoch', type=int, default=1000, metavar='A',
help='total number of epochs')
parser.add_argument('--min_pool_size', type=int, default=1000, metavar='A',
help='minimum pool size')
parser.add_argument('--real_ratio', type=float, default=1, metavar='A',
help='ratio of env samples / model samples')
parser.add_argument('--train_every_n_steps', type=int, default=1, metavar='A',
help='frequency of training policy')
parser.add_argument('--num_train_repeat', type=int, default=1, metavar='A',
help='times to training policy per step')
parser.add_argument('--eval_n_episodes', type=int, default=10, metavar='A',
help='number of evaluation episodes')
parser.add_argument('--max_train_repeat_per_step', type=int, default=5, metavar='A',
help='max training times per step')
parser.add_argument('--policy_train_batch_size', type=int, default=256, metavar='A',
help='batch size for training policy')
parser.add_argument('--init_exploration_steps', type=int, default=5000, metavar='A',
help='exploration steps initially')
parser.add_argument('--model_type', default='pytorch', metavar='A',
help='predict model -- pytorch or tensorflow')
parser.add_argument('--cuda', default=True, action="store_true",
help='run on CUDA (default: True)')
return parser.parse_args()
def train(args, env_sampler, predict_env, agent, env_pool, model_pool):
total_step = 0
reward_sum = 0
rollout_length = 1
exploration_before_start(args, env_sampler, env_pool, agent)
for epoch_step in tqdm(range(args.num_epoch)):
if epoch_step % 100 == 0:
buffer_path = f'dataset/{args.env}-{args.algo}-epoch{epoch_step}.npy'
env_pool.save_buffer(buffer_path)
agent_path = f'saved_policies/{args.env}-{args.algo}-epoch{epoch_step}'
agent.save_model(agent_path)
start_step = total_step
train_policy_steps = 0
for i in count():
cur_step = total_step - start_step
# epoch_length = 1000, min_pool_size = 1000
if cur_step >= args.epoch_length and len(env_pool) > args.min_pool_size:
break
# step in real environment
cur_state, action, next_state, reward, done, info = env_sampler.sample(agent)
env_pool.push(cur_state, action, reward, next_state, done)
# train policy
if len(env_pool) > args.min_pool_size:
train_policy_steps += train_policy_repeats(args, total_step, train_policy_steps, cur_step, env_pool, model_pool, agent)
total_step += 1
rewards = [evaluate_policy(env_sampler, agent, args.epoch_length) for _ in range(args.eval_n_episodes)]
print("")
print(f'Epoch {epoch_step} Eval_Reward {np.mean(rewards)} Eval_Std {np.std(rewards)}')
# wandb.log({'eval_reward': np.mean(rewards),
# 'eval_std': np.std(rewards)})
def evaluate_policy(env_sampler, agent, epoch_length=1000):
env_sampler.current_state = None
sum_reward = 0
for t in range(epoch_length):
cur_state, action, next_state, reward, done, info = env_sampler.sample(agent, eval_t=True)
sum_reward += reward
if done:
break
return sum_reward
def exploration_before_start(args, env_sampler, env_pool, agent):
# init_exploration_steps = 5000
for i in range(args.init_exploration_steps):
cur_state, action, next_state, reward, done, info = env_sampler.sample(agent)
env_pool.push(cur_state, action, reward, next_state, done)
def train_policy_repeats(args, total_step, train_step, cur_step, env_pool, model_pool, agent):
# train_every_n_steps: 1
if total_step % args.train_every_n_steps > 0:
return 0
# max_train_repeat_per_step: 5
if train_step > args.max_train_repeat_per_step * total_step:
return 0
# num_train_repeat: 20
for i in range(args.num_train_repeat):
env_batch_size = int(args.policy_train_batch_size * args.real_ratio)
model_batch_size = args.policy_train_batch_size - env_batch_size
env_state, env_action, env_reward, env_next_state, env_done = env_pool.sample(int(env_batch_size))
if model_batch_size > 0 and len(model_pool) > 0:
model_state, model_action, model_reward, model_next_state, model_done = model_pool.sample_all_batch(int(model_batch_size))
batch_state, batch_action, batch_reward, batch_next_state, batch_done = np.concatenate((env_state, model_state), axis=0), \
np.concatenate((env_action, model_action), axis=0), np.concatenate((np.reshape(env_reward, (env_reward.shape[0], -1)), model_reward), axis=0), \
np.concatenate((env_next_state, model_next_state), axis=0), np.concatenate((np.reshape(env_done, (env_done.shape[0], -1)), model_done), axis=0)
else:
batch_state, batch_action, batch_reward, batch_next_state, batch_done = env_state, env_action, env_reward, env_next_state, env_done
batch_reward, batch_done = np.squeeze(batch_reward), np.squeeze(batch_done)
batch_done = (~batch_done).astype(int)
critic_1_loss, critic_2_loss, policy_loss, ent_loss, alpha = agent.update_parameters((batch_state, batch_action, batch_reward, batch_next_state, batch_done), args.policy_train_batch_size, i)
# wandb.log({'critic1_loss': critic_1_loss,
# 'critic2_loss': critic_2_loss,
# 'policy_loss': policy_loss,
# 'entropy_loss': ent_loss,
# 'alpha': alpha})
return args.num_train_repeat
def main():
args = readParser()
# Initial environment
if args.env == 'Ant-v2':
from env.ant import AntTruncatedObsEnv
env = AntTruncatedObsEnv()
elif args.env == 'Humanoid-v2':
from env.humanoid import HumanoidTruncatedObsEnv
env = HumanoidTruncatedObsEnv()
args.automatic_entropy_tuning = True
else:
env = gym.make(args.env)
# wandb.init(project='mdn-mbrl',
# group=args.env.split('-')[0],
# name=f"{args.algo}-{args.seed}",
# config=args)
# env = gym.make(args.env)
# Set random seed
torch.manual_seed(args.seed)
np.random.seed(args.seed)
env.seed(args.seed)
env.action_space.seed(args.seed)
# Intial agent
agent = SAC(env.observation_space.shape[0], env.action_space, args)
# hack to check humanoid is working
# if args.env == 'Humanoid-v2':
# agent.target_entropy = -2
# agent.alpha = 0.05
# Initial ensemble model
state_size = np.prod(env.observation_space.shape)
action_size = np.prod(env.action_space.shape)
if args.model_type == 'pytorch':
# env_model = Ensemble_Model(args.num_networks, args.num_elites, state_size, action_size, args.reward_size, args.pred_hidden_size)
env_model = ProbEnsemble(args.num_networks, args.num_elites, state_size, action_size, args.reward_size, args.pred_hidden_size)
else:
env_model = construct_model(obs_dim=state_size, act_dim=action_size, hidden_dim=args.pred_hidden_size, num_networks=args.num_networks, num_elites=args.num_elites)
if args.cuda:
env_model.to('cuda')
# Predict environments
predict_env = PredictEnv(env_model, args.env, args.model_type)
# Initial pool for env
env_pool = ReplayMemory(args.replay_size)
# Initial pool for model
model_pool = ReplayMemory(1)
# Sampler of environment
env_sampler = EnvSampler(env)
train(args, env_sampler, predict_env, agent, env_pool, model_pool)
if __name__ == '__main__':
main()