generated from eigerco/beerus
-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathtrapezoidal_rule.cairo
43 lines (41 loc) · 1.12 KB
/
trapezoidal_rule.cairo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
use core::array::SpanTrait;
use core::num::traits::Zero;
use core::ops::AddAssign;
//! Integrate using the composite trapezoidal rule
/// Integrate y(x).
/// # Arguments
/// * `xs` - The sorted abscissa sequence of len L.
/// * `ys` - The ordinate sequence of len L.
/// # Returns
/// * `T` - The approximate integral.
pub fn trapezoidal_rule<
T,
+PartialOrd<T>,
+Add<T>,
+AddAssign<T, T>,
+Sub<T>,
+Mul<T>,
+Div<T>,
+Copy<T>,
+Drop<T>,
+Zero<T>,
+Into<u8, T>,
>(
mut xs: Span<T>, mut ys: Span<T>,
) -> T {
// [Check] Inputs
assert(xs.len() == ys.len(), 'Arrays must have the same len');
assert(xs.len() >= 2, 'Array must have at least 2 elts');
// [Compute] Trapezoidal rule
let mut prev_x = *xs.pop_front().unwrap();
let mut prev_y = *ys.pop_front().unwrap();
let mut value = Zero::zero();
for next_x in xs {
assert(*next_x > prev_x, 'Abscissa must be sorted');
let next_y = *ys.pop_front().unwrap();
value += (*next_x - prev_x) * (prev_y + next_y);
prev_x = *next_x;
prev_y = next_y;
};
value / Into::into(2_u8)
}