-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmigenAES.py
1067 lines (912 loc) · 46.3 KB
/
migenAES.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#! /usr/bin/python3
import subprocess
from copy import copy
from migen import *
from migen.fhdl import verilog
from migen.fhdl.verilog import convert
##### string converters ####
# change plaintext to a matrix
def textconverter(text):
size = len(text) # size of plaintext
#to hold the plaintext matrix
newText = []
# copy text into newText
for i in range(size):
newText.append(text[i])
return newText
# change key text to a matrix
def keyconverter(key):
size = len(key) # size of key
assert size == 16
#to hold the key matrix
newkey = []
# copy key into newkey
for i in range(size):
newkey.append(key[i])
return newkey
def hexCharToInt(ch):
if ch=='0' or ch=='1' or ch=='2' or ch=='3' or ch=='4' or ch=='5' or ch=='6' or ch=='7' or ch=='8' or ch=='9':
return int(ch)
elif ch=='a' or ch=='b' or ch=='c' or ch=='d' or ch=='e' or ch=='f':
return int(ch,16)
else:
return 0
##############################
class AES(Module): # top level AES core
def __init__(self):
self.ptext = [Signal(8, name="ptext{}".format(x)) for x in range(16)]# plain text input to the AES Encryptor
self.key = [Signal(8, name="key{}".format(x)) for x in range(16)]# cipher key input to the AES Encryptor
self.ctext=[Signal(8, name="ctext{}".format(x)) for x in range(16)]# cipher text output from the AES Encryptor
self.recovered=[Signal(8, name="rec{}".format(x)) for x in range(16)]# recovered text output from the AES Decryptor
self.temp=[Signal(8, name="temp{}".format(x)) for x in range(16)]# temporary matrix in progress, input to AES Decryptor
self.io = set(self.ctext) | set(self.ptext) | set(self.recovered) | set(self.key)# specify ctext, ptext and key as IO ports of this Module
self.enc=AES_Enc()
# duplicate ctext on temp matrix
for x in range(16):
self.comb += self.temp[x].eq(self.ctext[x])
#self.dec=AES_Dec()
"""
j = Instance("AES_Dec",
i_master_clk=ClockSignal(),
i_master_rst=ResetSignal(),
# 16 bytes message - input to the AES_Dec Module
i_ctext0=self.temp[0],
i_ctext1=self.temp[1],
i_ctext2=self.temp[2],
i_ctext3=self.temp[3],
i_ctext4=self.temp[4],
i_ctext5=self.temp[5],
i_ctext6=self.temp[6],
i_ctext7=self.temp[7],
i_ctext8=self.temp[8],
i_ctext9=self.temp[9],
i_ctext10=self.temp[10],
i_ctext11=self.temp[11],
i_ctext12=self.temp[12],
i_ctext13=self.temp[13],
i_ctext14=self.temp[14],
i_ctext15=self.temp[15],
# 16 bytes key - input to the AES_Dec Module
i_key0=self.key[0],
i_key1=self.key[1],
i_key2=self.key[2],
i_key3=self.key[3],
i_key4=self.key[4],
i_key5=self.key[5],
i_key6=self.key[6],
i_key7=self.key[7],
i_key8=self.key[8],
i_key9=self.key[9],
i_key10=self.key[10],
i_key11=self.key[11],
i_key12=self.key[12],
i_key13=self.key[13],
i_key14=self.key[14],
i_key15=self.key[15],
# 16 bytes ciphertext - output from the AES_Dec Module
o_ptext0=self.recovered[0],
o_ptext1=self.recovered[1],
o_ptext2=self.recovered[2],
o_ptext3=self.recovered[3],
o_ptext4=self.recovered[4],
o_ptext5=self.recovered[5],
o_ptext6=self.recovered[6],
o_ptext7=self.recovered[7],
o_ptext8=self.recovered[8],
o_ptext9=self.recovered[9],
o_ptext10=self.recovered[10],
o_ptext11=self.recovered[11],
o_ptext12=self.recovered[12],
o_ptext13=self.recovered[13],
o_ptext14=self.recovered[14],
o_ptext15=self.recovered[15]
)
self.specials += i, j
"""
### specify the Module behavior below
class AES_Enc(Module): # AES Encryption core
def __init__(self):
self.ptext = [Signal(8, name="ptext{}".format(x)) for x in range(16)]# plain text input from the AES top level module
self.key = [Signal(8, name="key{}".format(x)) for x in range(16)]# cipher key input to the AES core
self.ctext=[Signal(8, name="ctext{}".format(x)) for x in range(16)]# cipher text output from the AES cipher
self.temp=[Signal(8, name="temp{}".format(x)) for x in range(16)] # temporary matrices in progress
self.temp1=[Signal(8, name="temp1{}".format(x)) for x in range(16)]
self.temp2=[Signal(8, name="temp2{}".format(x)) for x in range(16)]
self.io = set(self.ctext) | set(self.ptext) | set(self.key)# specify ctext, ptext and key as IO ports of this Module
# instantiate sub modules here
self.addkey=AddRoundKey()
self.subbytes=SubBytes()
self.shiftrow=ShiftRow()
self.mixcolumn=MixColumn()
# duplicate ctext on temp matrix
for x in range(16):
self.comb += self.temp[x].eq(self.ctext[x])
# duplicate ctext on temp1 matrix
for y in range(16):
self.comb += self.temp1[y].eq(self.ctext[y])
# duplicate ctext on temp2 matrix
for z in range(16):
self.comb += self.temp2[z].eq(self.ctext[z])
class AES_Dec(Module): # top level AES Decryption core
def __init__(self):
self.ctext=[Signal(8, name="ctext{}".format(x)) for x in range(16)]# cipher text input from AES top level module
self.key = [Signal(8, name="key{}".format(x)) for x in range(16)]# cipher key input to the AES core
self.ptext = [Signal(8, name="ptext{}".format(x)) for x in range(16)]# plain text output port from AES core
self.temp=[Signal(8, name="temp{}".format(x)) for x in range(16)] # temporary matrices in progress
self.temp1=[Signal(8, name="temp1{}".format(x)) for x in range(16)]
self.temp2=[Signal(8, name="temp2{}".format(x)) for x in range(16)]
self.io = set(self.ctext) | set(self.ptext) | set(self.key)# specify ctext, ptext and key as IO ports of this Module
"""
i = Instance("MixColumnInv",
#i_master_clk=ClockSignal(),
#i_master_rst=ResetSignal(),
# 16 bytes ciphertext - input to the MixColumnInv Module
i_sm0=self.ctext[0],
i_sm1=self.ctext[1],
i_sm2=self.ctext[2],
i_sm3=self.ctext[3],
i_sm4=self.ctext[4],
i_sm5=self.ctext[5],
i_sm6=self.ctext[6],
i_sm7=self.ctext[7],
i_sm8=self.ctext[8],
i_sm9=self.ctext[9],
i_sm10=self.ctext[10],
i_sm11=self.ctext[11],
i_sm12=self.ctext[12],
i_sm13=self.ctext[13],
i_sm14=self.ctext[14],
i_sm15=self.ctext[15],
# 16 bytes ciphertext - output from the MixColumnInv Module
o_recovered0=self.ptext[0],
o_recovered1=self.ptext[1],
o_recovered2=self.ptext[2],
o_recovered3=self.ptext[3],
o_recovered4=self.ptext[4],
o_recovered5=self.ptext[5],
o_recovered6=self.ptext[6],
o_recovered7=self.ptext[7],
o_recovered8=self.ptext[8],
o_recovered9=self.ptext[9],
o_recovered10=self.ptext[10],
o_recovered11=self.ptext[11],
o_recovered12=self.ptext[12],
o_recovered13=self.ptext[13],
o_recovered14=self.ptext[14],
o_recovered15=self.ptext[15]
)
"""
# duplicate ptext on temp matrix
for x in range(16):
self.comb += self.temp[x].eq(self.ptext[x])
"""
j = Instance("ShiftRowInv",
#i_master_clk=ClockSignal(),
#i_master_rst=ResetSignal(),
# 16 bytes message - input to the ShiftRowInv Module
i_sm0=self.temp[0],
i_sm1=self.temp[1],
i_sm2=self.temp[2],
i_sm3=self.temp[3],
i_sm4=self.temp[4],
i_sm5=self.temp[5],
i_sm6=self.temp[6],
i_sm7=self.temp[7],
i_sm8=self.temp[8],
i_sm9=self.temp[9],
i_sm10=self.temp[10],
i_sm11=self.temp[11],
i_sm12=self.temp[12],
i_sm13=self.temp[13],
i_sm14=self.temp[14],
i_sm15=self.temp[15],
# 16 bytes recovered - output from the ShiftRowInv Module
o_recovered0=self.ptext[0],
o_recovered1=self.ptext[1],
o_recovered2=self.ptext[2],
o_recovered3=self.ptext[3],
o_recovered4=self.ptext[4],
o_recovered5=self.ptext[5],
o_recovered6=self.ptext[6],
o_recovered7=self.ptext[7],
o_recovered8=self.ptext[8],
o_recovered9=self.ptext[9],
o_recovered10=self.ptext[10],
o_recovered11=self.ptext[11],
o_recovered12=self.ptext[12],
o_recovered13=self.ptext[13],
o_recovered14=self.ptext[14],
o_recovered15=self.ptext[15]
)
"""
# duplicate ptext on temp1 matrix
for y in range(16):
self.comb += self.temp1[y].eq(self.ptext[y])
"""
k = Instance("SubBytesInv",
#i_master_clk=ClockSignal(),
#i_master_rst=ResetSignal(),
# 16 bytes message - input to the SubBytesInv Module
i_sm0=self.temp1[0],
i_sm1=self.temp1[1],
i_sm2=self.temp1[2],
i_sm3=self.temp1[3],
i_sm4=self.temp1[4],
i_sm5=self.temp1[5],
i_sm6=self.temp1[6],
i_sm7=self.temp1[7],
i_sm8=self.temp1[8],
i_sm9=self.temp1[9],
i_sm10=self.temp1[10],
i_sm11=self.temp1[11],
i_sm12=self.temp1[12],
i_sm13=self.temp1[13],
i_sm14=self.temp1[14],
i_sm15=self.temp1[15],
# 16 bytes ciphertext - output from the SubBytesInv Module
o_recovered0=self.ptext[0],
o_recovered1=self.ptext[1],
o_recovered2=self.ptext[2],
o_recovered3=self.ptext[3],
o_recovered4=self.ptext[4],
o_recovered5=self.ptext[5],
o_recovered6=self.ptext[6],
o_recovered7=self.ptext[7],
o_recovered8=self.ptext[8],
o_recovered9=self.ptext[9],
o_recovered10=self.ptext[10],
o_recovered11=self.ptext[11],
o_recovered12=self.ptext[12],
o_recovered13=self.ptext[13],
o_recovered14=self.ptext[14],
o_recovered15=self.ptext[15]
)
"""
# duplicate ptext on temp2 matrix
for z in range(16):
self.comb += self.temp2[y].eq(self.ptext[y])
"""
l = Instance("AddRoundKey",
#i_master_clk=ClockSignal(),
#i_master_rst=ResetSignal(),
# 16 bytes message - input to the AddRoundKey Module
i_sm0=self.temp2[0],
i_sm1=self.temp2[1],
i_sm2=self.temp2[2],
i_sm3=self.temp2[3],
i_sm4=self.temp2[4],
i_sm5=self.temp2[5],
i_sm6=self.temp2[6],
i_sm7=self.temp2[7],
i_sm8=self.temp2[8],
i_sm9=self.temp2[9],
i_sm10=self.temp2[10],
i_sm11=self.temp2[11],
i_sm12=self.temp2[12],
i_sm13=self.temp2[13],
i_sm14=self.temp2[14],
i_sm15=self.temp2[15],
# 16 bytes key - input to the AddRoundKey Module
i_key0=self.key[0],
i_key1=self.key[1],
i_key2=self.key[2],
i_key3=self.key[3],
i_key4=self.key[4],
i_key5=self.key[5],
i_key6=self.key[6],
i_key7=self.key[7],
i_key8=self.key[8],
i_key9=self.key[9],
i_key10=self.key[10],
i_key11=self.key[11],
i_key12=self.key[12],
i_key13=self.key[13],
i_key14=self.key[14],
i_key15=self.key[15],
# 16 bytes ptext - output from the AddRoundKey Module
o_ctext0=self.ptext[0],
o_ctext1=self.ptext[1],
o_ctext2=self.ptext[2],
o_ctext3=self.ptext[3],
o_ctext4=self.ptext[4],
o_ctext5=self.ptext[5],
o_ctext6=self.ptext[6],
o_ctext7=self.ptext[7],
o_ctext8=self.ptext[8],
o_ctext9=self.ptext[9],
o_ctext10=self.ptext[10],
o_ctext11=self.ptext[11],
o_ctext12=self.ptext[12],
o_ctext13=self.ptext[13],
o_ctext14=self.ptext[14],
o_ctext15=self.ptext[15],
)
self.specials += i, j, k, l
"""
### specify the Module behavior below
'''
@module name: AddRoundKey
@description: Combines each byte of the state with a block of the round key using bitwise xor.
The expanded key bytes are never reused. Once the first 16 bytes of the state are XORed against the first 16 bytes of the
expanded key, then the expanded key bytes are never used again.
'''
class AddRoundKey(Module):
def __init__(self):
self.sm = [Signal(8, name_override="sm{}".format(x)) for x in range(16)]# state matrix input port from the cipher Module
self.key = [Signal(8, name_override="key{}".format(x)) for x in range(16)]# cipher key input port from the cipher Module
self.ctext=[Signal(8, name_override="ctext{}".format(x)) for x in range(16)]# cipher text output port
self.io = set()
self.io = self.io.union(self.sm)
self.io = self.io.union(self.key)
self.io = self.io.union(self.ctext)
### specify the Module behavior below
for a in range(16): # ctext = sm XOR key
self.comb += self.ctext[a].eq(self.sm[a] ^ self.key[a])
'''
@module name: ShiftRow
@description: The ShiftRows step operates on the rows of the state; it cyclically shifts the bytes in each row by a certain offset.
For AES, the first row is left unchanged. Each byte of the second row is shifted one to the left. Similarly, the third
and fourth rows are shifted by offsets of two and three respectively. In this way, each column of the output
state of the ShiftRows step is composed of bytes from each column of the input state. The importance of this step is to
avoid the columns being encrypted independently, in which case AES degenerates into four independent block ciphers.
'''
class ShiftRow(Module): # ShiftRow submodule
def __init__(self):
self.sm = [Signal(8, name_override="sm{}".format(x)) for x in range(16)]# state matrix input port from the cipher Module
self.ctext=[Signal(8, name_override="ctext{}".format(x)) for x in range(16)]# cipher text output port
self.sm_shifted=[Signal(8, name_override="sm_shifted{}".format(x)) for x in range(16)]# shifted state matrix output
self.temp = Signal(8)
self.enc_en = Signal(1, name_override="enc_en")
self.io = set()
self.io = self.io.union(self.sm)
self.io = self.io.union(self.sm_shifted)
self.io = {self.enc_en}
#self.io = self.io.union(self.ctext)
### specify the Module behavior below
# emit state matrix as is on the cipher text output port
'''
for b in range(16):
self.comb += self.ctext[b].eq(self.sm[b])
'''
#perform row shifting
'''
self.temp = self.ctext[13]
self.ctext[13] = self.ctext[1]
self.ctext[1] = self.ctext[5]
self.ctext[5] = self.ctext[9]
self.ctext[9] = self.temp
self.temp = self.ctext[10]
self.ctext[10] = self.ctext[2]
self.ctext[2] = self.temp
self.temp = self.ctext[14]
self.ctext[14] = self.ctext[6]
self.ctext[6] = self.temp
self.temp = self.ctext[7]
self.ctext[7] = self.ctext[3]
self.ctext[3] = self.ctext[15]
self.ctext[15] = self.ctext[11]
self.ctext[11] = self.temp
'''
#peform row shifted
# row 1 - left as is
'''
self.sm_shifted[0]=self.ctext[0]
'''
self.comb +=[
If(self.enc_en,
# row 1 - leave as is
self.sm_shifted[0].eq(self.sm[0]),
self.sm_shifted[1].eq(self.sm[1]),
self.sm_shifted[2].eq(self.sm[2]),
self.sm_shifted[3].eq(self.sm[3]),
# row 2 - shift once to the left
self.sm_shifted[4].eq(self.sm[5]),
self.sm_shifted[5].eq(self.sm[6]),
self.sm_shifted[6].eq(self.sm[7]),
self.sm_shifted[7].eq(self.sm[4]),
# row 3 - shift twice to the left
self.sm_shifted[8].eq(self.sm[10]),
self.sm_shifted[9].eq(self.sm[11]),
self.sm_shifted[10].eq(self.sm[8]),
self.sm_shifted[11].eq(self.sm[9]),
# row 3 - shift twice to the left
self.sm_shifted[12].eq(self.sm[15]),
self.sm_shifted[13].eq(self.sm[12]),
self.sm_shifted[14].eq(self.sm[13]),
self.sm_shifted[15].eq(self.sm[14])
).Else(
self.sm_shifted[0].eq(self.sm[0]),
self.sm_shifted[1].eq(self.sm[1]),
self.sm_shifted[2].eq(self.sm[2]),
self.sm_shifted[3].eq(self.sm[3]),
# row 2 - shift once to the left
self.sm_shifted[4].eq(self.sm[5]),
self.sm_shifted[5].eq(self.sm[6]),
self.sm_shifted[6].eq(self.sm[7]),
self.sm_shifted[7].eq(self.sm[4]),
# row 3 - shift twice to the left
self.sm_shifted[8].eq(self.sm[10]),
self.sm_shifted[9].eq(self.sm[11]),
self.sm_shifted[10].eq(self.sm[8]),
self.sm_shifted[11].eq(self.sm[9]),
self.sm_shifted[12].eq(self.sm[15]),
self.sm_shifted[13].eq(self.sm[12]),
self.sm_shifted[14].eq(self.sm[13]),
self.sm_shifted[15].eq(self.sm[14]))]
def check_ShiftRow(dut,sm):
for i in range(16):# loop to load testbench inputs onto input ports of our AESCipher core
yield dut.sm[i].eq(sm[i])# load the ith byte of the plain text
yield# wait a clock cycle
class ShiftRowInv(Module): # ShiftRowInv submodule
def __init__(self):
self.sm = [Signal(8, name_override="sm{}".format(x)) for x in range(16)]# state matrix input port from the top level Module
self.recovered=[Signal(8, name_override="recovered{}".format(x)) for x in range(16)]# recovered text output port
self.temp = Signal(8)
self.io = set()
self.io = self.io.union(self.sm)
self.io = self.io.union(self.recovered)
### specify the Module behavior below
# emit state matrix as is on the recovered text output port
for x in range(16):
self.comb += self.recovered[x].eq(self.sm[x])
#perform row shifting
self.temp = self.recovered[1]
self.recovered[1] = self.recovered[13]
self.recovered[13] = self.recovered[9]
self.recovered[9] = self.recovered[5]
self.recovered[5] = self.temp
self.temp = self.recovered[2]
self.recovered[2] = self.recovered[10]
self.recovered[10] = self.temp
self.temp = self.recovered[6]
self.recovered[6] = self.recovered[14]
self.recovered[14] = self.temp
self.temp = self.recovered[15]
self.recovered[15] = self.recovered[3]
self.recovered[3] = self.recovered[7]
self.recovered[7] = self.recovered[11]
self.recovered[11] = self.temp
'''
@module name: SubBytes
@description: During encryption, each value of the state is replaced with the corresponding sbox value.
'''
class SubBytes(Module): # SubBytes submodule
def __init__(self):
#self.sm = [Signal(8, name_override="sm{}".format(x)) for x in range(16)]# state matrix input port from the cipher Module
#self.ctext=[Signal(8, name_override="ctext{}".format(x)) for x in range(16)]# cipher text output port
#self.sm_in=[Signal(8, name_override="sm_in{}".format(x)) for x in range(16)]# cipher text output port
self.sm_out=Signal(8)#[Signal(8, name_override="sm_out{}".format(x)) for x in range(16)]# cipher text output port
#self.temp=Signal(8)
self.io = set()
#self.io = self.io.union(self.sm_in)
self.io = {self.sm_out}
# instantiate a memory block containing 256 words, each of width 8 bits and initialise it with sbox matrix values
self.specials.sboxmem = Memory(8, 256, init=[
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16]
)
self.rdport = self.sboxmem.get_port(async_read=True)
self.specials += self.rdport
self.ios = {self.rdport.adr}
self.ios = {self.rdport.dat_r}
### Specify the Module behavior below
# perform byte substitution
self.comb += self.sm_out.eq(self.rdport.dat_r)
def check_SubBytes(dut,sm):
for i in range(16):# loop to load testbench inputs onto input ports of our AESCipher core
yield dut.sm_in[i].eq(sm[i])# load the ith byte of the plain text
yield
yield dut.rdport.adr.eq(dut.sm_in[i])
#yield
class SubBytesInv(Module): # SubBytesInv submodule
def __init__(self):
self.sm = [Signal(8, name_override="sm{}".format(x)) for x in range(16)]# state matrix input port from the cipher Module
self.recovered=[Signal(8, name_override="recovered{}".format(x)) for x in range(16)]# recovered text output port
self.io = set()
self.io = self.io.union(self.sm)
self.io = self.io.union(self.recovered)
# instantiate a memory block containing 256 words, each of width 8 bits and initialise it with array values
# inverse sbox
self.specials.invsboxmem =invsboxmem = Memory(8, 256, init=
[
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d])
### specify the Module behavior below
# perform inverse byte substitution
self.rdport = self.invsboxmem.get_port()
self.specials += self.rdport
self.ios = {self.rdport.adr}
for x in range(len(self.sm)):
self.comb += [self.rdport.adr.eq(x), # set the read address to x
self.recovered[x].eq(self.rdport.dat_r)] # read memory at x and write it to ctext at x
class MixColumn(Module): # MixColumn submodule
def __init__(self):
self.sm = [Signal(8, name_override="sm{}".format(x)) for x in range(16)]# state matrix input port from cipher Module
self.ctext = [Signal(8, name="ctext{}".format(x)) for x in range(16)]# cipher text output port
self.column = [Signal(8, name="col{}".format(x)) for x in range(4)] # to hold a column of stateMatrix
self.temp = [Signal(8, name="temp{}".format(x)) for x in range(4)] # to hold a column of stateMatrix temporarily
self.sm_out = [Signal(8, name="sm_out{}".format(x)) for x in range(16)]# cipher text output port
self.mult20 = Signal(8)
self.mult21 = Signal(8)
self.mult22 = Signal(8)
self.mult23 = Signal(8)
self.mult30 = Signal(8)
self.mult31 = Signal(8)
self.mult32 = Signal(8)
self.mult33 = Signal(8)
# instantiate a memory block containing 256 words, each of width 8 bits and initialise it with array values
# Multiplication by 2 - LUT, in GF(2^8)
self.specials.mult2 =mult2 = Memory(8, 256, init=[
0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
0x1b, 0x19, 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15, 0x0b, 0x09, 0x0f, 0x0d, 0x03, 0x01, 0x07, 0x05,
0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31, 0x37, 0x35, 0x2b, 0x29, 0x2f, 0x2d, 0x23, 0x21, 0x27, 0x25,
0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55, 0x4b, 0x49, 0x4f, 0x4d, 0x43, 0x41, 0x47, 0x45,
0x7b, 0x79, 0x7f, 0x7d, 0x73, 0x71, 0x77, 0x75, 0x6b, 0x69, 0x6f, 0x6d, 0x63, 0x61, 0x67, 0x65,
0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95, 0x8b, 0x89, 0x8f, 0x8d, 0x83, 0x81, 0x87, 0x85,
0xbb, 0xb9, 0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5, 0xab, 0xa9, 0xaf, 0xad, 0xa3, 0xa1, 0xa7, 0xa5,
0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1, 0xd7, 0xd5, 0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1, 0xc7, 0xc5,
0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5, 0xeb, 0xe9, 0xef, 0xed, 0xe3, 0xe1, 0xe7, 0xe5]
)
# Multiplication by 3 - LUT, in GF(2^8)
self.specials.mult3 =mult3 = Memory(8, 256, init=[
0x00, 0x03, 0x06, 0x05, 0x0c, 0x0f, 0x0a, 0x09, 0x18, 0x1b, 0x1e, 0x1d, 0x14, 0x17, 0x12, 0x11,
0x30, 0x33, 0x36, 0x35, 0x3c, 0x3f, 0x3a, 0x39, 0x28, 0x2b, 0x2e, 0x2d, 0x24, 0x27, 0x22, 0x21,
0x60, 0x63, 0x66, 0x65, 0x6c, 0x6f, 0x6a, 0x69, 0x78, 0x7b, 0x7e, 0x7d, 0x74, 0x77, 0x72, 0x71,
0x50, 0x53, 0x56, 0x55, 0x5c, 0x5f, 0x5a, 0x59, 0x48, 0x4b, 0x4e, 0x4d, 0x44, 0x47, 0x42, 0x41,
0xc0, 0xc3, 0xc6, 0xc5, 0xcc, 0xcf, 0xca, 0xc9, 0xd8, 0xdb, 0xde, 0xdd, 0xd4, 0xd7, 0xd2, 0xd1,
0xf0, 0xf3, 0xf6, 0xf5, 0xfc, 0xff, 0xfa, 0xf9, 0xe8, 0xeb, 0xee, 0xed, 0xe4, 0xe7, 0xe2, 0xe1,
0xa0, 0xa3, 0xa6, 0xa5, 0xac, 0xaf, 0xaa, 0xa9, 0xb8, 0xbb, 0xbe, 0xbd, 0xb4, 0xb7, 0xb2, 0xb1,
0x90, 0x93, 0x96, 0x95, 0x9c, 0x9f, 0x9a, 0x99, 0x88, 0x8b, 0x8e, 0x8d, 0x84, 0x87, 0x82, 0x81,
0x9b, 0x98, 0x9d, 0x9e, 0x97, 0x94, 0x91, 0x92, 0x83, 0x80, 0x85, 0x86, 0x8f, 0x8c, 0x89, 0x8a,
0xab, 0xa8, 0xad, 0xae, 0xa7, 0xa4, 0xa1, 0xa2, 0xb3, 0xb0, 0xb5, 0xb6, 0xbf, 0xbc, 0xb9, 0xba,
0xfb, 0xf8, 0xfd, 0xfe, 0xf7, 0xf4, 0xf1, 0xf2, 0xe3, 0xe0, 0xe5, 0xe6, 0xef, 0xec, 0xe9, 0xea,
0xcb, 0xc8, 0xcd, 0xce, 0xc7, 0xc4, 0xc1, 0xc2, 0xd3, 0xd0, 0xd5, 0xd6, 0xdf, 0xdc, 0xd9, 0xda,
0x5b, 0x58, 0x5d, 0x5e, 0x57, 0x54, 0x51, 0x52, 0x43, 0x40, 0x45, 0x46, 0x4f, 0x4c, 0x49, 0x4a,
0x6b, 0x68, 0x6d, 0x6e, 0x67, 0x64, 0x61, 0x62, 0x73, 0x70, 0x75, 0x76, 0x7f, 0x7c, 0x79, 0x7a,
0x3b, 0x38, 0x3d, 0x3e, 0x37, 0x34, 0x31, 0x32, 0x23, 0x20, 0x25, 0x26, 0x2f, 0x2c, 0x29, 0x2a,
0x0b, 0x08, 0x0d, 0x0e, 0x07, 0x04, 0x01, 0x02, 0x13, 0x10, 0x15, 0x16, 0x1f, 0x1c, 0x19, 0x1a]
)
#self.io = set()
#self.i = self.sm
#self.o = self.ctext
self.io = set()
self.io = self.io.union(self.sm)
self.io = self.io.union(self.ctext)
self.mult2rdport = self.mult2.get_port(async_read=True)
self.specials += self.mult2rdport
self.mult3rdport = self.mult3.get_port(async_read=True)
self.specials += self.mult3rdport
#self.ios = {self.rdport.adr}
#for x in range(len(self.sm)):
# self.comb += [self.rdport.adr.eq(x), # set the read address to x
# self.recovered[x].eq(self.rdport.dat_r)] # read memory at x and write it to ctext at x
### specify the Module behavior below
# mix column method
# 02 03 01 01
# 01 02 03 01
# 01 01 02 03
# 03 01 01 02
pos = 0 #to hold position in the column
count = 0
tmp = 0
for i in range(16):
count = i+1
self.comb += self.temp[tmp].eq(self.sm[i]) #build a temporary column of 4 values in temp
if count % 4 == 0: #check whether the column holds 4 elements
# perform mixColumn computations on the column
self.sync += [self.mult2rdport.adr.eq(self.temp[0]),
self.mult20.eq(self.mult2rdport.dat_r)]
# perform lookup of the mult2 table at index temp[0] and store result in mult20
self.sync += [self.mult2rdport.adr.eq(self.temp[1]),
self.mult21.eq(self.mult2rdport.dat_r)]
# perform lookup of the mult2 table at index temp[1] and store result in mult21
self.sync += [self.mult2rdport.adr.eq(self.temp[2]),
self.mult22.eq(self.mult2rdport.dat_r)]
# perform lookup of the mult2 table at index temp[2] and store result in mult22
self.sync += [self.mult2rdport.adr.eq(self.temp[3]),
self.mult23.eq(self.mult2rdport.dat_r)]
# perform lookup of the mult2 table at index temp[3] and store result in mult23
self.sync += [self.mult3rdport.adr.eq(self.temp[0]),
self.mult30.eq(self.mult3rdport.dat_r)]
# perform lookup of the mult3 table at index temp[0] and store result in mult30
self.sync += [self.mult3rdport.adr.eq(self.temp[1]),
self.mult31.eq(self.mult3rdport.dat_r)]
# perform lookup of the mult3 table at index temp[1] and store result in mult31
self.sync += [self.mult3rdport.adr.eq(self.temp[2]),
self.mult32.eq(self.mult3rdport.dat_r)]
# perform lookup of the mult3 table at index temp[2] and store result in mult32
self.sync += [self.mult3rdport.adr.eq(self.temp[3]),
self.mult33.eq(self.mult3rdport.dat_r)]
# perform lookup of the mult3 table at index temp[3] and store result in mult33
self.comb += self.column[0].eq(self.mult20 ^ self.mult31 ^ self.temp[2] ^ self.temp[3])
self.comb += self.column[1].eq(self.temp[0] ^ self.mult21 ^ self.mult32 ^ self.temp[3])
self.comb += self.column[2].eq(self.temp[0] ^ self.temp[1] ^ self.mult22 ^ self.mult33)
self.comb += self.column[3].eq(self.mult30 ^ self.temp[1] ^ self.temp[2] ^ self.mult23)
#update stateMatrix with new column values
for j in range(count-4,count):
self.comb += self.sm_out[j].eq(self.column[pos])
pos += 1 #go to next element
pos = 0 #reset position
tmp = 0 #reset tmp
else:
tmp += 1 #go to next element in temp
def check_MixColumn(dut,sm):
for i in range(16):# loop to load testbench inputs onto input ports of our AESCipher core
yield dut.sm[i].eq(sm[i])# load the ith byte of the plain text
for i in range(32):# loop to load testbench inputs onto input ports of our AESCipher core
yield #dut.sm[i].eq(sm[i])# load the ith byte of the plain text
#yield# wait a clock cycle
class MixColumnInv(Module): # MixColumnInv submodule
def __init__(self):
self.sm = [Signal(8, name_override="sm{}".format(x)) for x in range(16)]# state matrix input port from the top level Module
self.recovered = [Signal(8, name="rec{}".format(x)) for x in range(16)]# recovered text output port
self.column = [Signal(8, name="col{}".format(x)) for x in range(4)] # to hold a column of stateMatrix
self.temp = [Signal(8, name="temp{}".format(x)) for x in range(4)] # to hold a column of stateMatrix temporarily
self.mult90 = Signal(8)
self.mult91 = Signal(8)
self.mult92 = Signal(8)
self.mult93 = Signal(8)
self.multB0 = Signal(8)
self.multB1 = Signal(8)
self.multB2 = Signal(8)
self.multB3 = Signal(8)
self.multD0 = Signal(8)
self.multD1 = Signal(8)
self.multD2 = Signal(8)
self.multD3 = Signal(8)
self.multE0 = Signal(8)
self.multE1 = Signal(8)
self.multE2 = Signal(8)
self.multE3 = Signal(8)
# instantiate a memory block containing 256 words, each of width 8 bits and initialise it with array values
# Multiplication by 9 - LUT, in GF(2^8)
self.specials.mult9 =mult9 = Memory(8, 256, init=[
0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77,
0x90, 0x99, 0x82, 0x8b, 0xb4, 0xbd, 0xa6, 0xaf, 0xd8, 0xd1, 0xca, 0xc3, 0xfc, 0xf5, 0xee, 0xe7,
0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04, 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c,
0xab, 0xa2, 0xb9, 0xb0, 0x8f, 0x86, 0x9d, 0x94, 0xe3, 0xea, 0xf1, 0xf8, 0xc7, 0xce, 0xd5, 0xdc,
0x76, 0x7f, 0x64, 0x6d, 0x52, 0x5b, 0x40, 0x49, 0x3e, 0x37, 0x2c, 0x25, 0x1a, 0x13, 0x08, 0x01,
0xe6, 0xef, 0xf4, 0xfd, 0xc2, 0xcb, 0xd0, 0xd9, 0xae, 0xa7, 0xbc, 0xb5, 0x8a, 0x83, 0x98, 0x91,
0x4d, 0x44, 0x5f, 0x56, 0x69, 0x60, 0x7b, 0x72, 0x05, 0x0c, 0x17, 0x1e, 0x21, 0x28, 0x33, 0x3a,
0xdd, 0xd4, 0xcf, 0xc6, 0xf9, 0xf0, 0xeb, 0xe2, 0x95, 0x9c, 0x87, 0x8e, 0xb1, 0xb8, 0xa3, 0xaa,
0xec, 0xe5, 0xfe, 0xf7, 0xc8, 0xc1, 0xda, 0xd3, 0xa4, 0xad, 0xb6, 0xbf, 0x80, 0x89, 0x92, 0x9b,
0x7c, 0x75, 0x6e, 0x67, 0x58, 0x51, 0x4a, 0x43, 0x34, 0x3d, 0x26, 0x2f, 0x10, 0x19, 0x02, 0x0b,
0xd7, 0xde, 0xc5, 0xcc, 0xf3, 0xfa, 0xe1, 0xe8, 0x9f, 0x96, 0x8d, 0x84, 0xbb, 0xb2, 0xa9, 0xa0,
0x47, 0x4e, 0x55, 0x5c, 0x63, 0x6a, 0x71, 0x78, 0x0f, 0x06, 0x1d, 0x14, 0x2b, 0x22, 0x39, 0x30,
0x9a, 0x93, 0x88, 0x81, 0xbe, 0xb7, 0xac, 0xa5, 0xd2, 0xdb, 0xc0, 0xc9, 0xf6, 0xff, 0xe4, 0xed,
0x0a, 0x03, 0x18, 0x11, 0x2e, 0x27, 0x3c, 0x35, 0x42, 0x4b, 0x50, 0x59, 0x66, 0x6f, 0x74, 0x7d,
0xa1, 0xa8, 0xb3, 0xba, 0x85, 0x8c, 0x97, 0x9e, 0xe9, 0xe0, 0xfb, 0xf2, 0xcd, 0xc4, 0xdf, 0xd6,
0x31, 0x38, 0x23, 0x2a, 0x15, 0x1c, 0x07, 0x0e, 0x79, 0x70, 0x6b, 0x62, 0x5d, 0x54, 0x4f, 0x46]
)
# Multiplication by B - LUT, in GF(2^8)
self.specials.multB =multB = Memory(8, 256, init=[
0x00, 0x0b, 0x16, 0x1d, 0x2c, 0x27, 0x3a, 0x31, 0x58, 0x53, 0x4e, 0x45, 0x74, 0x7f, 0x62, 0x69,
0xb0, 0xbb, 0xa6, 0xad, 0x9c, 0x97, 0x8a, 0x81, 0xe8, 0xe3, 0xfe, 0xf5, 0xc4, 0xcf, 0xd2, 0xd9,
0x7b, 0x70, 0x6d, 0x66, 0x57, 0x5c, 0x41, 0x4a, 0x23, 0x28, 0x35, 0x3e, 0x0f, 0x04, 0x19, 0x12,
0xcb, 0xc0, 0xdd, 0xd6, 0xe7, 0xec, 0xf1, 0xfa, 0x93, 0x98, 0x85, 0x8e, 0xbf, 0xb4, 0xa9, 0xa2,
0xf6, 0xfd, 0xe0, 0xeb, 0xda, 0xd1, 0xcc, 0xc7, 0xae, 0xa5, 0xb8, 0xb3, 0x82, 0x89, 0x94, 0x9f,
0x46, 0x4d, 0x50, 0x5b, 0x6a, 0x61, 0x7c, 0x77, 0x1e, 0x15, 0x08, 0x03, 0x32, 0x39, 0x24, 0x2f,
0x8d, 0x86, 0x9b, 0x90, 0xa1, 0xaa, 0xb7, 0xbc, 0xd5, 0xde, 0xc3, 0xc8, 0xf9, 0xf2, 0xef, 0xe4,
0x3d, 0x36, 0x2b, 0x20, 0x11, 0x1a, 0x07, 0x0c, 0x65, 0x6e, 0x73, 0x78, 0x49, 0x42, 0x5f, 0x54,
0xf7, 0xfc, 0xe1, 0xea, 0xdb, 0xd0, 0xcd, 0xc6, 0xaf, 0xa4, 0xb9, 0xb2, 0x83, 0x88, 0x95, 0x9e,
0x47, 0x4c, 0x51, 0x5a, 0x6b, 0x60, 0x7d, 0x76, 0x1f, 0x14, 0x09, 0x02, 0x33, 0x38, 0x25, 0x2e,
0x8c, 0x87, 0x9a, 0x91, 0xa0, 0xab, 0xb6, 0xbd, 0xd4, 0xdf, 0xc2, 0xc9, 0xf8, 0xf3, 0xee, 0xe5,
0x3c, 0x37, 0x2a, 0x21, 0x10, 0x1b, 0x06, 0x0d, 0x64, 0x6f, 0x72, 0x79, 0x48, 0x43, 0x5e, 0x55,
0x01, 0x0a, 0x17, 0x1c, 0x2d, 0x26, 0x3b, 0x30, 0x59, 0x52, 0x4f, 0x44, 0x75, 0x7e, 0x63, 0x68,
0xb1, 0xba, 0xa7, 0xac, 0x9d, 0x96, 0x8b, 0x80, 0xe9, 0xe2, 0xff, 0xf4, 0xc5, 0xce, 0xd3, 0xd8,
0x7a, 0x71, 0x6c, 0x67, 0x56, 0x5d, 0x40, 0x4b, 0x22, 0x29, 0x34, 0x3f, 0x0e, 0x05, 0x18, 0x13,
0xca, 0xc1, 0xdc, 0xd7, 0xe6, 0xed, 0xf0, 0xfb, 0x92, 0x99, 0x84, 0x8f, 0xbe, 0xb5, 0xa8, 0xa3]
)
# Multiplication by D - LUT, in GF(2^8)
self.specials.multD =multD = Memory(8, 256, init=[
0x00, 0x0d, 0x1a, 0x17, 0x34, 0x39, 0x2e, 0x23, 0x68, 0x65, 0x72, 0x7f, 0x5c, 0x51, 0x46, 0x4b,
0xd0, 0xdd, 0xca, 0xc7, 0xe4, 0xe9, 0xfe, 0xf3, 0xb8, 0xb5, 0xa2, 0xaf, 0x8c, 0x81, 0x96, 0x9b,
0xbb, 0xb6, 0xa1, 0xac, 0x8f, 0x82, 0x95, 0x98, 0xd3, 0xde, 0xc9, 0xc4, 0xe7, 0xea, 0xfd, 0xf0,
0x6b, 0x66, 0x71, 0x7c, 0x5f, 0x52, 0x45, 0x48, 0x03, 0x0e, 0x19, 0x14, 0x37, 0x3a, 0x2d, 0x20,
0x6d, 0x60, 0x77, 0x7a, 0x59, 0x54, 0x43, 0x4e, 0x05, 0x08, 0x1f, 0x12, 0x31, 0x3c, 0x2b, 0x26,
0xbd, 0xb0, 0xa7, 0xaa, 0x89, 0x84, 0x93, 0x9e, 0xd5, 0xd8, 0xcf, 0xc2, 0xe1, 0xec, 0xfb, 0xf6,
0xd6, 0xdb, 0xcc, 0xc1, 0xe2, 0xef, 0xf8, 0xf5, 0xbe, 0xb3, 0xa4, 0xa9, 0x8a, 0x87, 0x90, 0x9d,
0x06, 0x0b, 0x1c, 0x11, 0x32, 0x3f, 0x28, 0x25, 0x6e, 0x63, 0x74, 0x79, 0x5a, 0x57, 0x40, 0x4d,
0xda, 0xd7, 0xc0, 0xcd, 0xee, 0xe3, 0xf4, 0xf9, 0xb2, 0xbf, 0xa8, 0xa5, 0x86, 0x8b, 0x9c, 0x91,
0x0a, 0x07, 0x10, 0x1d, 0x3e, 0x33, 0x24, 0x29, 0x62, 0x6f, 0x78, 0x75, 0x56, 0x5b, 0x4c, 0x41,
0x61, 0x6c, 0x7b, 0x76, 0x55, 0x58, 0x4f, 0x42, 0x09, 0x04, 0x13, 0x1e, 0x3d, 0x30, 0x27, 0x2a,
0xb1, 0xbc, 0xab, 0xa6, 0x85, 0x88, 0x9f, 0x92, 0xd9, 0xd4, 0xc3, 0xce, 0xed, 0xe0, 0xf7, 0xfa,
0xb7, 0xba, 0xad, 0xa0, 0x83, 0x8e, 0x99, 0x94, 0xdf, 0xd2, 0xc5, 0xc8, 0xeb, 0xe6, 0xf1, 0xfc,
0x67, 0x6a, 0x7d, 0x70, 0x53, 0x5e, 0x49, 0x44, 0x0f, 0x02, 0x15, 0x18, 0x3b, 0x36, 0x21, 0x2c,
0x0c, 0x01, 0x16, 0x1b, 0x38, 0x35, 0x22, 0x2f, 0x64, 0x69, 0x7e, 0x73, 0x50, 0x5d, 0x4a, 0x47,
0xdc, 0xd1, 0xc6, 0xcb, 0xe8, 0xe5, 0xf2, 0xff, 0xb4, 0xb9, 0xae, 0xa3, 0x80, 0x8d, 0x9a, 0x97]
)
# Multiplication by E - LUT, in GF(2^8)
self.specials.multE =multE = Memory(8, 256, init=[
0x00, 0x0e, 0x1c, 0x12, 0x38, 0x36, 0x24, 0x2a, 0x70, 0x7e, 0x6c, 0x62, 0x48, 0x46, 0x54, 0x5a,
0xe0, 0xee, 0xfc, 0xf2, 0xd8, 0xd6, 0xc4, 0xca, 0x90, 0x9e, 0x8c, 0x82, 0xa8, 0xa6, 0xb4, 0xba,
0xdb, 0xd5, 0xc7, 0xc9, 0xe3, 0xed, 0xff, 0xf1, 0xab, 0xa5, 0xb7, 0xb9, 0x93, 0x9d, 0x8f, 0x81,
0x3b, 0x35, 0x27, 0x29, 0x03, 0x0d, 0x1f, 0x11, 0x4b, 0x45, 0x57, 0x59, 0x73, 0x7d, 0x6f, 0x61,
0xad, 0xa3, 0xb1, 0xbf, 0x95, 0x9b, 0x89, 0x87, 0xdd, 0xd3, 0xc1, 0xcf, 0xe5, 0xeb, 0xf9, 0xf7,
0x4d, 0x43, 0x51, 0x5f, 0x75, 0x7b, 0x69, 0x67, 0x3d, 0x33, 0x21, 0x2f, 0x05, 0x0b, 0x19, 0x17,
0x76, 0x78, 0x6a, 0x64, 0x4e, 0x40, 0x52, 0x5c, 0x06, 0x08, 0x1a, 0x14, 0x3e, 0x30, 0x22, 0x2c,
0x96, 0x98, 0x8a, 0x84, 0xae, 0xa0, 0xb2, 0xbc, 0xe6, 0xe8, 0xfa, 0xf4, 0xde, 0xd0, 0xc2, 0xcc,
0x41, 0x4f, 0x5d, 0x53, 0x79, 0x77, 0x65, 0x6b, 0x31, 0x3f, 0x2d, 0x23, 0x09, 0x07, 0x15, 0x1b,
0xa1, 0xaf, 0xbd, 0xb3, 0x99, 0x97, 0x85, 0x8b, 0xd1, 0xdf, 0xcd, 0xc3, 0xe9, 0xe7, 0xf5, 0xfb,
0x9a, 0x94, 0x86, 0x88, 0xa2, 0xac, 0xbe, 0xb0, 0xea, 0xe4, 0xf6, 0xf8, 0xd2, 0xdc, 0xce, 0xc0,
0x7a, 0x74, 0x66, 0x68, 0x42, 0x4c, 0x5e, 0x50, 0x0a, 0x04, 0x16, 0x18, 0x32, 0x3c, 0x2e, 0x20,
0xec, 0xe2, 0xf0, 0xfe, 0xd4, 0xda, 0xc8, 0xc6, 0x9c, 0x92, 0x80, 0x8e, 0xa4, 0xaa, 0xb8, 0xb6,
0x0c, 0x02, 0x10, 0x1e, 0x34, 0x3a, 0x28, 0x26, 0x7c, 0x72, 0x60, 0x6e, 0x44, 0x4a, 0x58, 0x56,
0x37, 0x39, 0x2b, 0x25, 0x0f, 0x01, 0x13, 0x1d, 0x47, 0x49, 0x5b, 0x55, 0x7f, 0x71, 0x63, 0x6d,
0xd7, 0xd9, 0xcb, 0xc5, 0xef, 0xe1, 0xf3, 0xfd, 0xa7, 0xa9, 0xbb, 0xb5, 0x9f, 0x91, 0x83, 0x8d]
)
#self.io = set()
self.i = self.sm
self.o = self.recovered
self.mult9rdport = self.mult9.get_port()
self.specials += self.mult9rdport
self.multDrdport = self.multD.get_port()
self.specials += self.multDrdport
self.multBrdport = self.multB.get_port()
self.specials += self.multBrdport
self.multErdport = self.multE.get_port()
self.specials += self.multErdport
### specify the Module behavior below
# inverse mix column method
# 0E 0B 0D 09
# 09 0E 0B 0D
# 0D 09 0E 0B
# 0B 0D 09 0E
pos = 0 #to hold position in the column
count = 0
tmp = 0
for i in range(16):
count = i+1
self.comb += self.temp[tmp].eq(self.sm[i]) #build a temporary column of 4 values
if count % 4 == 0: #check whether the column holds 4 elements
# perform mixColumn computations on the column
self.comb += [self.multErdport.adr.eq(self.temp[0]),
self.multE0.eq(self.multErdport.dat_r)]
self.comb += [self.multErdport.adr.eq(self.temp[1]),
self.multE1.eq(self.multErdport.dat_r)]
self.comb += [self.multErdport.adr.eq(self.temp[2]),
self.multE2.eq(self.multErdport.dat_r)]
self.comb += [self.multErdport.adr.eq(self.temp[3]),
self.multE3.eq(self.multErdport.dat_r)]
self.comb += [self.mult9rdport.adr.eq(self.temp[0]),
self.mult90.eq(self.mult9rdport.dat_r)]
self.comb += [self.mult9rdport.adr.eq(self.temp[1]),
self.mult91.eq(self.mult9rdport.dat_r)]
self.comb += [self.mult9rdport.adr.eq(self.temp[2]),
self.mult92.eq(self.mult9rdport.dat_r)]
self.comb += [self.mult9rdport.adr.eq(self.temp[3]),
self.mult93.eq(self.mult9rdport.dat_r)]
self.comb += [self.multDrdport.adr.eq(self.temp[0]),
self.multD0.eq(self.multDrdport.dat_r)]
self.comb += [self.multDrdport.adr.eq(self.temp[1]),
self.multD1.eq(self.multDrdport.dat_r)]
self.comb += [self.multDrdport.adr.eq(self.temp[2]),
self.multD2.eq(self.multDrdport.dat_r)]
self.comb += [self.multDrdport.adr.eq(self.temp[3]),
self.multD3.eq(self.multDrdport.dat_r)]
self.comb += [self.multBrdport.adr.eq(self.temp[0]),
self.multB0.eq(self.multBrdport.dat_r)]
self.comb += [self.multBrdport.adr.eq(self.temp[1]),
self.multB1.eq(self.multBrdport.dat_r)]
self.comb += [self.multBrdport.adr.eq(self.temp[2]),
self.multB2.eq(self.multBrdport.dat_r)]
self.comb += [self.multBrdport.adr.eq(self.temp[3]),
self.multB3.eq(self.multBrdport.dat_r)]
# column[0] = (0Extemp[0])^(0Bxtemp[1])^(0Dxtemp[2])^(09xtemp[3])
self.comb += self.column[0].eq(multE0 ^ multB1 ^ multD2 ^ mult93)
# column[1] = (09xtemp[0])^(0Extemp[1])^(0Bxtemp[2])^(0Dxtemp[3])
self.comb += self.column[1].eq(mult90 ^ multE1 ^ multB2 ^ multD3)
# column[2] = (0Dxtemp[0])^(09xtemp[1])^(0Extemp[2])^(0Bxtemp[3])
self.comb += self.column[2].eq(multD0 ^ mult91 ^ multE2 ^ multB3)
# column[3] = (0Bxtemp[0])^(0Dxtemp[1])^(09xtemp[2])^(0Extemp[3])
self.comb += self.column[3].eq(multB0 ^ multD1 ^ mult92 ^ multE3)
#update stateMatrix with new column values
for j in range(count-4,count):
self.comb += self.recovered[j].eq(self.column[pos])
pos += 1 #go to next element
pos = 0 #reset position
tmp = 0 # reset tmp
else:
tmp += 1 #go to next element in column
# Generate RTL for the parent module and the submodules, run through
# icarus for a syntax check
def test_instance_module():
sub4 = SubBytes()
convert(sub4, sub4.io, name="SubBytes").write("SubBytes.v")
'''
par = AES()
convert(par, par.io, name="AES").write("AES.v")
par1 = AES_Enc()
convert(par1, par1.io, name="AES_Enc").write("AES_Enc.v")
par2 = AES_Dec()
convert(par2, par2.io, name="AES_Dec").write("AES_Dec.v")
sub1 = AddRoundKey()