-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
186 lines (150 loc) · 6.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import gym
from gym.spaces import Box
from gym.wrappers import Monitor
import cv2
import numpy as np
import pandas as pd
import torch
import torch.optim as optim
import torch.nn.functional as F
import networks
from memory import ReplayBuffer
# Image : Size, RGB to Gray
class FramePreprocessing(gym.ObservationWrapper):
def __init__(self, env):
super(FramePreprocessing, self).__init__(env)
self.observation_space = Box(low=0, high=255, shape=(84, 84, 1), dtype=np.uint8)
def observation(self, observation):
observation = cv2.cvtColor(observation, cv2.COLOR_RGB2GRAY)
observation = cv2.resize(observation, (84, 84), interpolation=cv2.INTER_AREA)
return observation[:, :, None]
# Image : H W C -> C H W
class ChangeImageAxis(gym.ObservationWrapper):
def __init__(self, env):
super(ChangeImageAxis, self).__init__(env)
obs_shape = self.observation_space.shape
self.observation_space = Box(low=0.0, high=1.0, shape=(obs_shape[::-1]), dtype=np.float32)
def observation(self, observation):
return np.moveaxis(observation, -1, 0)
# for 4 Frame
class FromBuffer(gym.ObservationWrapper):
def __init__(self, env):
super(FromBuffer, self).__init__(env)
self.temp = None
self.observation_space = Box(env.observation_space.low.repeat(4, axis=0),
env.observation_space.high.repeat(4, axis=0), dtype=np.float32)
def reset(self):
self.temp = np.zeros_like(self.observation_space.low, dtype=np.float32)
return self.observation(self.env.reset())
def observation(self, observation):
self.temp[:-1] = self.temp[1:]
self.temp[-1] = observation
return self.temp
# image Scale [0 255] -> [0, 1]
class ImageScaling(gym.ObservationWrapper):
def observation(self, observation):
return np.array(observation).astype(np.float32) / 255.0
def make_env(env_name: str, vidio_path):
env = gym.make(env_name)
env = FramePreprocessing(env)
env = ChangeImageAxis(env)
env = FromBuffer(env)
env = ImageScaling(env)
env = Monitor(env, vidio_path, force=True)
return env
def experiment(env_name: str, action_num: int, learning_rate=1e-5,
epochs: int = 10000, batch_size: int = 32, gamma: float = 0.98,
eps_init: float = 1, eps_grad: float = 0.2, eps_min: float = 0.01,
csv_name: str = 'test.csv', vidio_path: str = './monitor'):
div = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
env = make_env(env_name, vidio_path=vidio_path)
memory = ReplayBuffer(20000)
q = networks.DQN(action_num).to(div)
q_target = networks.DQN(action_num).to(div)
optimizer = optim.Adam(q.parameters(), lr=learning_rate)
episode_list = []
reward_list = []
eps_list = []
for epoch in range(epochs):
print_score = 0.0
eps = max(eps_min, eps_init - 0.01 * (epoch / (1 / eps_grad)))
state = env.reset()
while True:
action = q.sample_action(torch.from_numpy(np.float32(state)).unsqueeze(0).to(div), eps)
next_state, reward, finish, _ = env.step(action)
memory.put(state, action, reward, next_state, finish)
state = next_state
print_score += reward
if len(memory) > 10000:
update(q, q_target, memory, optimizer, div, batch_size, gamma)
if finish:
break
print("n_episode :{}, score : {:.1f}, eps : {:.1f}%".format(epoch, print_score, eps * 100))
episode_list.append(epoch)
reward_list.append(print_score)
eps_list.append(eps * 100)
if epoch % 20 == 0:
q_target.load_state_dict(q.state_dict())
df = pd.DataFrame({'episode': episode_list, 'reward': reward_list, 'epsilon': eps_list})
df.to_csv(csv_name, index=False, mode='w')
def recent_experiment(env_name: str, action_num: int, learning_rate=1e-5,
epochs: int = 10000, batch_size: int = 32, gamma: float = 0.98,
eps_init: float = 1, eps_grad: float = 0.2, eps_min: float = 0.01,
csv_name: str = 'test.csv', vidio_path: str = './monitor'):
div = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
env = make_env(env_name, vidio_path=vidio_path)
memory = ReplayBuffer(20000)
q = networks.DQN(action_num).to(div)
q_target = networks.DQN(action_num).to(div)
optimizer = optim.Adam(q.parameters(), lr=learning_rate)
episode_list = []
reward_list = []
eps_list = []
actions = 0
eps_count = 0
for epoch in range(epochs):
print_score = 0.0
eps_count += 1
action_count = 0
eps = max(eps_min, eps_init - 0.01 * (epoch / (1 / eps_grad)))
state = env.reset()
while True:
action_count += 1
action = q.sample_action(torch.from_numpy(np.float32(state)).unsqueeze(0).to(div), eps)
next_state, reward, finish, _ = env.step(action)
memory.put(state, action, reward, next_state, finish)
state = next_state
print_score += reward
if finish:
actions += action_count
break
if len(memory) > 10000:
for i in range(actions//eps_count):
actions = 0
eps_count = 0
update(q, q_target, memory, optimizer, div, batch_size, gamma)
memory.clean()
print("n_episode :{}, score : {:.1f}, eps : {:.1f}%, memory : {}, actions : {}".format(epoch, print_score, eps * 100, len(memory), action_count))
action_count = 0
episode_list.append(epoch)
reward_list.append(print_score)
eps_list.append(eps * 100)
if epoch % 20 == 0:
q_target.load_state_dict(q.state_dict())
df = pd.DataFrame({'episode': episode_list, 'reward': reward_list, 'epsilon': eps_list})
df.to_csv(csv_name, index=False, mode='w')
def update(q, q_target, memory, optimizer, div, batch_size=32, gamma=0.98):
state, action, reward, next_state, finish = memory.sample(batch_size)
state = torch.from_numpy(np.float32(state)).to(div)
action = torch.from_numpy(np.int64(action)).to(div)
reward = torch.from_numpy(reward).to(div)
next_state = torch.from_numpy(next_state).to(div)
finish = torch.from_numpy(finish).to(div)
q_out = q(state)
q_a = q_out.gather(1, action.unsqueeze(-1)).squeeze(-1)
max_next_q = q_target(next_state).max(1)[0]
target = reward + gamma * max_next_q * (1 - finish)
loss = F.mse_loss(q_a, target.data.to(div))
optimizer.zero_grad()
loss.backward()
optimizer.step()