forked from ialhashim/DenseDepth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloss.py
23 lines (17 loc) · 750 Bytes
/
loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import keras.backend as K
import tensorflow as tf
def depth_loss_function(y_true, y_pred, theta=0.1, maxDepthVal=1000.0/10.0):
# Point-wise depth
l_depth = K.mean(K.abs(y_pred - y_true), axis=-1)
# Edges
dy_true, dx_true = tf.image.image_gradients(y_true)
dy_pred, dx_pred = tf.image.image_gradients(y_pred)
l_edges = K.mean(K.abs(dy_pred - dy_true) + K.abs(dx_pred - dx_true), axis=-1)
# Structural similarity (SSIM) index
l_ssim = K.clip((1 - tf.image.ssim(y_true, y_pred, maxDepthVal)) * 0.5, 0, 1)
# Weights
w1 = 1.0
w2 = 1.0
w3 = theta
# return (w1 * l_ssim) + (w2 * K.mean(l_edges)) + (w3 * K.mean(l_depth))
return (w1 * l_ssim) + (w2 * K.mean(l_edges)) + (w3 * K.mean(l_depth))