1
1
use super :: abstraction:: Abstraction ;
2
- use super :: abstractor:: Abstractor ;
3
2
use super :: datasets:: AbstractionSpace ;
4
3
use super :: datasets:: ObservationSpace ;
4
+ use super :: encoding:: Encoder ;
5
5
use super :: histogram:: Histogram ;
6
6
use super :: metric:: Metric ;
7
7
use super :: xor:: Pair ;
@@ -40,7 +40,7 @@ use std::collections::BTreeMap;
40
40
pub struct Layer {
41
41
street : Street ,
42
42
metric : Metric ,
43
- lookup : Abstractor ,
43
+ lookup : Encoder ,
44
44
kmeans : AbstractionSpace ,
45
45
points : ObservationSpace ,
46
46
}
@@ -56,8 +56,8 @@ impl Layer {
56
56
const fn k ( street : Street ) -> usize {
57
57
match street {
58
58
Street :: Pref => 169 ,
59
- Street :: Flop => 8 ,
60
- Street :: Turn => 8 ,
59
+ Street :: Flop => 32 ,
60
+ Street :: Turn => 32 ,
61
61
Street :: Rive => unreachable ! ( ) ,
62
62
}
63
63
}
@@ -69,8 +69,8 @@ impl Layer {
69
69
const fn t ( street : Street ) -> usize {
70
70
match street {
71
71
Street :: Pref => 0 ,
72
- Street :: Flop => 16 ,
73
- Street :: Turn => 16 ,
72
+ Street :: Flop => 32 ,
73
+ Street :: Turn => 32 ,
74
74
Street :: Rive => unreachable ! ( ) ,
75
75
}
76
76
}
@@ -85,7 +85,7 @@ impl Layer {
85
85
Self {
86
86
street : Street :: Rive ,
87
87
metric : Metric :: default ( ) ,
88
- lookup : Abstractor :: default ( ) ,
88
+ lookup : Encoder :: default ( ) ,
89
89
kmeans : AbstractionSpace :: default ( ) ,
90
90
points : ObservationSpace :: default ( ) ,
91
91
}
@@ -97,7 +97,7 @@ impl Layer {
97
97
/// 3. cluster kmeans centroids
98
98
pub fn inner ( & self ) -> Self {
99
99
let mut layer = Self {
100
- lookup : Abstractor :: default ( ) , // assigned during clustering
100
+ lookup : Encoder :: default ( ) , // assigned during clustering
101
101
kmeans : AbstractionSpace :: default ( ) , // assigned during clustering
102
102
street : self . inner_street ( ) , // uniquely determined by outer layer
103
103
metric : self . inner_metric ( ) , // uniquely determined by outer layer
@@ -143,7 +143,7 @@ impl Layer {
143
143
let x = self . kmeans . 0 . get ( a) . expect ( "pre-computed" ) . histogram ( ) ;
144
144
let y = self . kmeans . 0 . get ( b) . expect ( "pre-computed" ) . histogram ( ) ;
145
145
let distance = self . metric . emd ( x, y) + self . metric . emd ( y, x) ;
146
- let distance = distance / 2.0 ;
146
+ let distance = distance / 2. ;
147
147
metric. insert ( index, distance) ;
148
148
}
149
149
}
0 commit comments