forked from a1k0n/a1gpt
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtensor.h
262 lines (240 loc) · 5.24 KB
/
tensor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#pragma once
#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#ifdef CUDA
#include <cuda_runtime.h>
#endif
#undef ALLOC_DEBUG
template <int N> struct Tensorf {
int shape[N];
float *data;
float *alloc;
#ifdef CUDA
float *gpu_data;
float *gpu_alloc;
#endif
Tensorf() {
data = NULL;
alloc = NULL;
#ifdef CUDA
gpu_data = NULL;
gpu_alloc = NULL;
#endif
}
Tensorf(float *_data, int i) {
assert(N == 1);
shape[0] = i;
data = _data;
alloc = NULL;
#ifdef CUDA
gpu_data = NULL;
gpu_alloc = NULL;
#endif
}
Tensorf(float *_data, int i, int j) {
assert(N == 2);
shape[0] = i;
shape[1] = j;
data = _data;
alloc = NULL;
#ifdef CUDA
gpu_data = NULL;
gpu_alloc = NULL;
#endif
}
void _alloc(size_t nfloats) {
#ifdef CUDA
_alloc_device(nfloats);
alloc = NULL;
data = NULL;
#else
_alloc_local(nfloats);
#endif
}
void _alloc_device(size_t nfloats) {
#ifdef CUDA
if (cudaMalloc(&gpu_alloc, nfloats * sizeof(float)) != cudaSuccess) {
fprintf(stderr, "cudaMalloc failed: %s\n", cudaGetErrorString(cudaGetLastError()));
abort();
}
gpu_data = gpu_alloc;
#else
_alloc_local(nfloats);
#endif
}
void _alloc_local(size_t nfloats) {
// allocate aligned float array
alloc = new float[nfloats + 7];
data = (float *)(((uintptr_t)alloc + 31) & ~31);
#ifdef ALLOC_DEBUG
printf("allocating (%d) %p -> %p\n", nfloats, alloc, data);
#endif
}
bool copyToDevice() {
#ifdef CUDA
if (gpu_data == NULL) {
_alloc_device(size());
}
if (cudaMemcpy(gpu_data, data, size() * sizeof(float), cudaMemcpyHostToDevice) != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed: %s\n", cudaGetErrorString(cudaGetLastError()));
abort();
}
#endif
return true;
}
bool copyToCpu() {
#ifdef CUDA
if (data == NULL) {
_alloc_local(size());
}
if (cudaMemcpy(data, gpu_data, size() * sizeof(float), cudaMemcpyDeviceToHost) != cudaSuccess) {
fprintf(stderr, "cudaMemcpy failed: %s\n", cudaGetErrorString(cudaGetLastError()));
abort();
}
#endif
return true;
}
Tensorf(int i) {
assert(N == 1);
shape[0] = i;
_alloc(i);
}
Tensorf(int i, int j) {
assert(N == 2);
shape[0] = i;
shape[1] = j;
_alloc(i*j);
}
Tensorf(int i, int j, int k) {
assert(N == 3);
shape[0] = i;
shape[1] = j;
shape[2] = k;
_alloc(i*j*k);
}
Tensorf(const Tensorf<N> &other) {
for (int i = 0; i < N; i++) {
shape[i] = other.shape[i];
}
data = other.data;
alloc = other.alloc;
#ifdef CUDA
gpu_data = other.gpu_data;
gpu_alloc = other.gpu_alloc;
#endif
}
~Tensorf() {
if (alloc) {
#ifdef ALLOC_DEBUG
printf("freeing %p\n", alloc);
#endif
#ifdef CUDA
if (alloc == gpu_data) {
cudaFree(gpu_data);
return;
}
#endif
delete[] alloc;
}
}
void show() const {
if (data == NULL) {
printf("Tensorf: NULL\n");
return;
}
if (N == 1) {
int k = 128;
if (shape[0] < k) {
k = shape[0];
}
for (int i = 0; i < k; i++) {
printf("%7.4f ", data[i]);
}
printf("\n");
} else if (N == 2) {
int ki = 10;
int kj = 10;
if (shape[0] < ki) {
ki = shape[0];
}
if (shape[1] < kj) {
kj = shape[1];
}
for (int i = 0; i < ki; i++) {
for (int j = 0; j < kj; j++) {
printf("%7.4f ", data[i * shape[1] + j]);
}
printf("\n");
}
}
}
float& operator[](int i) const {
if (N != 1) {
fprintf(stderr, "Tensorf: operator[]: expected 1 dimension, got %d\n", N);
abort();
}
if (i >= shape[0]) {
fprintf(stderr, "Tensorf: out of bounds: %d >= %d\n", i, shape[N-1]);
abort();
}
return data[i];
}
Tensorf<N-1> slice(int i) const {
if (N <= 1) {
fprintf(stderr, "Tensorf: row: expected >1 dimensions, got %d\n", N);
abort();
}
if (i >= shape[0]) {
fprintf(stderr, "Tensorf: out of bounds: %d >= %d\n", i, shape[0]);
abort();
}
// return new tensor with no alloc, so it won't destroy the underlying array
// when it goes out of scope
Tensorf<N-1> out;
int stride = 1;
for (int j = 0; j < N-1; j++) {
out.shape[j] = shape[j+1];
stride *= shape[j+1];
}
if (data != NULL) {
out.data = data + i * stride;
}
out.alloc = NULL;
#ifdef CUDA
if (gpu_data != NULL) {
out.gpu_data = gpu_data + i * stride;
}
out.gpu_alloc = NULL;
#endif
return out;
}
float& operator()(int i, int j) const {
if (N != 2) {
fprintf(stderr, "Tensorf: operator[]: expected 2 dimensions, got %d\n", N);
abort();
}
if (i >= shape[0]) {
fprintf(stderr, "Tensorf: out of bounds: %d >= %d\n", i, shape[N-2]);
abort();
}
if (j >= shape[1]) {
fprintf(stderr, "Tensorf: out of bounds: %d >= %d\n", j, shape[N-1]);
abort();
}
return data[i * shape[1] + j];
}
size_t size() const {
size_t size = 1;
for (int i = 0; i < N; i++) {
size *= shape[i];
}
return size;
}
void zero() {
memset(data, 0, size() * sizeof(float));
}
};