-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathrun.py
231 lines (199 loc) · 7.56 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import subprocess
import argparse
from time import gmtime, strftime
def make_dir(args, is_large, lr):
root = args.output_dir
no_save = args.no_save
task_dir = args.task + '-' + ('large' if is_large else 'base')
hyperparam_dir = 'wd%s_ad%s_d%s_lr%s' % (str(args.weight_decay),
str(args.attn_dropout), str(args.dropout), str(lr))
time = strftime("%m%d-%H%M%S", gmtime())
log_name = '%s.log' % time
ckpt_name = '%s_ckpt' % time
log_dir = os.path.join(root, args.quant_mode)
log_dir = os.path.join(log_dir, task_dir)
log_dir = os.path.join(log_dir, hyperparam_dir)
log_file = os.path.join(log_dir, log_name)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not no_save:
ckpt_dir = os.path.join(log_dir, ckpt_name)
if not os.path.exists(ckpt_dir):
os.makedirs(ckpt_dir)
else:
ckpt_dir = log_dir # dummy directory
return log_file, ckpt_dir
def arg_parse():
parser = argparse.ArgumentParser(
description='This repository contains the PyTorch implementation for the paper ZeroQ: A Novel Zero-Shot Quantization Framework.')
# hyperparameters
parser.add_argument('--attn-dropout', type=float, default=0.1)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--weight-decay', type=float, default=0.1)
parser.add_argument('--lr', type=float, default=None)
parser.add_argument('--max-epochs', type=int, default=None)
parser.add_argument('--bs', type=float, default=None, help='batch size')
parser.add_argument('--arch', type=str, default='roberta_base',
choices=['roberta_base', 'roberta_large', ],
help='model architecture')
parser.add_argument('--task', type=str,
choices=['RTE', 'SST-2', 'MNLI', 'QNLI',
'CoLA', 'QQP', 'MRPC', 'STS-B',],
help='finetuning task')
parser.add_argument('--quant-mode', type=str,
default='symmetric',
choices=['none', 'symmetric',],
help='quantization mode')
parser.add_argument('--force-dequant', type=str, default='none',
choices=['none', 'gelu', 'layernorm', 'softmax', 'nonlinear'],
help='force dequantize the specific layers')
parser.add_argument('--model-dir', type=str, default='models',
help='model directory')
parser.add_argument('--output-dir', type=str, default='outputs',
help='folder name to store logs and checkpoints')
parser.add_argument('--restore-file', type=str, default=None,
help='finetuning from the given checkpoint')
parser.add_argument('--no-save', action='store_true')
args = parser.parse_args()
return args
args = arg_parse()
task = args.task
######################## Task specs ##########################
task_specs = {
'RTE' : {
'dataset': 'RTE-bin',
'num_classes': '2',
'lr': '2e-5',
'max_sentences': '16',
'total_num_updates': '2036',
'warm_updates': '122',
},
'SST-2' : {
'dataset': 'SST-2-bin',
'num_classes': '2',
'lr': '1e-5',
'max_sentences': '32',
'total_num_updates': '20935',
'warm_updates': '1256'
},
'MNLI' : {
'dataset': 'MNLI-bin',
'num_classes': '3',
'lr': '1e-5',
'max_sentences': '32',
'total_num_updates': '123873',
'warm_updates': '7432',
'valid_interval_sentences': '100000',
},
'QNLI' : {
'dataset': 'QNLI-bin',
'num_classes': '2',
'lr': '1e-5',
'max_sentences': '32',
'total_num_updates': '33112',
'warm_updates': '1986',
'valid_interval_sentences': '55000',
},
'CoLA' : {
'dataset': 'CoLA-bin',
'num_classes': '2',
'lr': '1e-5',
'max_sentences': '16',
'total_num_updates': '5336',
'warm_updates': '320'
},
'QQP' : {
'dataset': 'QQP-bin',
'num_classes': '2',
'lr': '1e-5',
'max_sentences': '32',
'total_num_updates': '113272',
'warm_updates': '28318',
'valid_interval_sentences': '950000',
},
'MRPC' : {
'dataset': 'MRPC-bin',
'num_classes': '2',
'lr': '1e-5',
'max_sentences': '16',
'total_num_updates': '2296',
'warm_updates': '137'
},
'STS-B' : {
'dataset': 'STS-B-bin',
'num_classes': '1',
'lr': '2e-5',
'max_sentences': '16',
'total_num_updates': '3598',
'warm_updates': '214'
},
}
is_large = 'large' in args.arch
spec = task_specs[task]
dataset = '%s-bin' % task
num_classes = spec['num_classes']
total_num_updates = spec['total_num_updates']
warm_updates = spec['warm_updates']
max_epochs = '6' if task in ['MNLI', 'QQP'] else '12'
lr = str(args.lr) if args.lr else spec['lr']
bs = str(args.bs) if args.bs else spec['max_sentences']
log_file, ckpt_dir = make_dir(args, is_large, lr)
model_path = args.model_dir + '/roberta.large/model.pt' if is_large \
else args.model_dir + '/roberta.base/model.pt'
valid_subset = 'valid' if task != 'MNLI' else 'valid,valid1'
valid_interval_updates = None
if 'valid_interval_sentences' in spec:
valid_interval_updates = \
str(int(int(spec['valid_interval_sentences']) / int(bs)))
print('valid_subset:',valid_subset)
print('valid_interval_updates:', valid_interval_updates)
###############################################################
finetuning_args = []
if args.quant_mode == 'symmetric':
warm_updates = '0' # no warm update for Q.A.finetuing
if args.restore_file is None:
raise Exception('please specify --restore-file for symmetric mode')
print("Finetuning from the checkpoint: %s" % args.restore_file)
finetuning_args.append('--restore-file')
finetuning_args.append(args.restore_file)
finetuning_args.append('--reset-lr-scheduler')
subprocess_args = [
'fairseq-train', dataset,
'--restore-file', model_path,
'--valid-subset', valid_subset,
'--max-positions', '512',
'--max-sentences', bs,
'--max-tokens', '4400',
'--task', 'sentence_prediction',
'--criterion', 'sentence_prediction',
'--reset-optimizer', '--reset-dataloader', '--reset-meters',
'--required-batch-size-multiple', '1',
'--init-token', '0', '--separator-token', '2',
'--arch', args.arch,
'--num-classes', num_classes,
'--weight-decay', str(args.weight_decay),
'--optimizer', 'adam', '--adam-betas', '(0.9, 0.98)', '--adam-eps', '1e-06',
'--clip-norm', '0.0',
'--lr-scheduler', 'polynomial_decay', '--lr', lr,
'--total-num-update', total_num_updates, '--warmup-updates', warm_updates,
'--max-epoch', max_epochs,
'--find-unused-parameters',
'--best-checkpoint-metric', 'accuracy',
'--save-dir', ckpt_dir,
'--log-file', log_file,
'--dropout', str(args.dropout), '--attention-dropout', str(args.attn_dropout),
'--quant-mode', args.quant_mode,
'--force-dequant', args.force_dequant,
]
if valid_interval_updates is not None:
subprocess_args += \
['--validate-interval-updates', valid_interval_updates]
if args.no_save:
subprocess_args += ['--no-save']
if args.task == 'sts':
subprocess_args += ['--regression-target', '--best-checkpoint-metric', 'loss']
else:
subprocess_args.append('--maximize-best-checkpoint-metric')
subprocess_args = subprocess_args + finetuning_args
subprocess.call(subprocess_args)