-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathMaster2.m
114 lines (92 loc) · 2.71 KB
/
Master2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
clear all;
clc
%Load Data Sets
Triangle;
OneSpiral;
TwoSpirals;
% load NewsGroup.mat; % Load Data Set
global D P IW distances Winners neuronsPerRow neuronsPerColumn N dimensions positions;
%DataPatterns = Patterns ;
%DataPatterns = full(tfidf(DataPatterns));
%DataPatterns = DataPatterns.' ;
Data = [TrianglePatterns; OneSpiralPatterns; TwoSpiralsData;];
for i=5:2:5
DataPatterns = [Data(i,:); Data((i+1),:)];
D = size(DataPatterns,1);
P = size(DataPatterns,2);
%Create minMax matrix from values of all patterns
for ii=1:D
minMax(ii,1) = min(DataPatterns(ii,:));
minMax(ii,2) = max(DataPatterns(ii,:));
end
%Specify SOM characteristics
if (i == 1)
gridSize = [20 20];
Winners = zeros(400,1); %Initialization of Winners matrix
elseif (i == 3)
gridSize = [200 1];
Winners = zeros(200,1); %Initialization of Winners matrix
else
gridSize = [350 1];
Winners = zeros(350,1); %Initialization of Winners matrix
end
%Create SOM
neuronsPerRow = gridSize(1,1);
neuronsPerColumn = gridSize(1,2);
N = neuronsPerRow*neuronsPerColumn;
minFeatureValues = minMax(:,1)';
maxFeatureValues = minMax(:,2)';
dimensions = size(minMax,1);
IW = zeros(N,dimensions);
for ii = 1:N,
IW(ii,:) = rand(1,dimensions).*(maxFeatureValues-minFeatureValues)+minFeatureValues;
end
if (i == 1)
f = 400;
elseif (i == 3)
f = 200;
else
f = 350;
end
position = [hexagonalTopology(neuronsPerRow,neuronsPerColumn); gridtop(neuronsPerRow,neuronsPerColumn); hextop(neuronsPerRow,neuronsPerColumn); randtop(neuronsPerRow,neuronsPerColumn)];
for k=1:2:7
positions = position(k:(k+1),:);
if (k == 1)
fprintf('hexagonal:\n');
elseif (k == 3)
fprintf('grid:\n');
elseif (k == 5)
fprintf('hex:\n');
else
fprintf('rand:\n');
end
distance = [boxdist(positions); dist(positions); linkdist(positions); mandist(positions)];
for j=0:f:(4*f-1)
distances = distance(j+1:j+f,:);
if (j == 0)
fprintf('boxdist\n\n');
elseif (j == f)
fprintf('dist\n\n');
elseif (j == 2*f)
fprintf('linkdist\n\n');
else
fprintf('mandist\n\n');
end
%Show original SOM
% figure;
% plot2DSomData(IW,distances,DataPatterns);
%Set TrainParameters
orderLR = 0.9;
orderEpochs = 200;
tuneLR = 0.1;
somTrainParameters(orderLR,orderEpochs,tuneLR);
%Train SOM
somTrain(DataPatterns);
%Show final SOM
figure;
plot2DSomData(IW,distances,DataPatterns);
% figure;
% somShow(IW,gridSize);
end
end
end