-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathtrain.py
44 lines (40 loc) · 1.16 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# Copyright (c) 2023-2024, ETH Zurich (Robotics Systems Lab)
# Author: Pascal Roth
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
# python
import torch
torch.set_default_dtype(torch.float32)
# imperative-planning-learning
from viplanner.config import DataCfg, TrainCfg
from viplanner.utils.trainer import Trainer
if __name__ == "__main__":
env_list_combi = [
"2azQ1b91cZZ", # matterport mesh
"JeFG25nYj2p", # matterport mesh
"Vvot9Ly1tCj", # matterport mesh
"town01", # carla mesh
"ur6pFq6Qu1A", # matterport mesh
"B6ByNegPMKs", # matterport mesh
"8WUmhLawc2A", # matterport mesh
"town01", # carla mesh
"2n8kARJN3HM", # matterport mesh
]
carla: TrainCfg = TrainCfg(
sem=True,
cost_map_name="cost_map_sem",
env_list=env_list_combi,
test_env_id=8,
file_name="combi_more_data",
data_cfg=DataCfg(
max_goal_distance=10.0,
),
n_visualize=128,
wb_project="viplanner",
)
trainer = Trainer(carla)
trainer.train()
trainer.test()
trainer.save_config()
torch.cuda.empty_cache()