forked from Argc0/Maze
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaze.hs
241 lines (183 loc) · 12 KB
/
maze.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
{-
Perfect Maze Authors: Argyro Ritsogianni - Leonidas Triantafyllou
Braid Maze Author: Leonidas Triantafyllou
Implemented in Fall 2016-2017
-}
import System.IO.Unsafe
import System.Random
data Maze = Maze { cells :: [(Bool, Bool)] -- [(rightWall, downWall)]
, width :: Int
, height :: Int
}
rand :: Int -> Int
-- Returns a random integer from 0 to max-1
rand max = unsafePerformIO $ randomRIO (0, max-1)
shuffle :: [a] -> [a]
-- Randomly shuffles a list
shuffle = unsafePerformIO . shuffleM
shuffleM :: [a] -> IO [a]
-- DON'T BOTHER! Helper for shuffle
shuffleM [] = return []
shuffleM n = do {
r <- fmap (flip mod $ length n) randomIO;
n1 <- return $ n !! r;
fmap ((:) n1) $ shuffleM $ (take r n) ++ (drop (r+1) n)
}
--ShowMaze
showMaze:: Maze->[(Int,Int)]->String
showMaze (Maze c w h) xs = showMaze1 c xs w h
showMaze1 cs xs w h = printline w ++ printmaze cs xs w h 0
printline 0 = "+\n"
printline w = "+---" ++ printline (w-1)
printmaze cs xs w h ctr | ctr == h = ""
| otherwise = pright cs xs w 0 ctr ++ pdown cs w h 0 ctr ++ printmaze (droplist cs w) xs w h (ctr+1)
droplist xs 0 = xs
droplist ((x,y):xs) w = droplist xs (w-1)
sol [] m1 m2 = False
sol ((x,y):xs) m1 m2 = if( m1 == y && m2 == x ) then True else sol xs m1 m2
pright ((x,y):cs) xs w m1 m2 | (m1 == 0) && (m1 == w-1) && (sol xs m1 m2 == True) = "| * |\n"
| (m1 == 0) && (sol xs m1 m2 == True) = if( x == True ) then "| * |" ++ pright cs xs w (m1+1) m2
else "| * " ++ pright cs xs w (m1+1) m2
| (m1 < w-1) && (sol xs m1 m2 == True) = if( x == True ) then " * |" ++ pright cs xs w (m1+1) m2
else " * " ++ pright cs xs w (m1+1) m2
| (m1 == w-1) && (sol xs m1 m2 == True) = " * |\n"
| (m1 == 0) && (m1 == w-1) = "| |\n"
| (m1 == 0) = if( x == True ) then "| |" ++ pright cs xs w (m1+1) m2
else "| " ++ pright cs xs w (m1+1) m2
| (m1 < w-1) = if( x == True ) then " |" ++ pright cs xs w (m1+1) m2
else " " ++ pright cs xs w (m1+1) m2
| (m1 == w-1) = " |\n"
pdown ((x,y):cs) w h m1 m2 | (m1 == 0) && (m1 == w-1) = if( m2 == h-1 ) then "+---+\n" else "+ +\n"
| (m1 == 0) = if( y == True ) then "+---+" ++ pdown cs w h (m1+1) m2
else "+ +" ++ pdown cs w h (m1+1) m2
| (m1 < w-1) = if( y == True ) then "---+" ++ pdown cs w h (m1+1) m2
else " +" ++ pdown cs w h (m1+1) m2
| (m1 == w-1) = if( y == True ) then "---+\n" else " +\n"
makeMaze:: Int->Int->Maze
makeMaze w h = Maze (makeMaze1 (w*h)) w h
makeMaze1 0 = []
makeMaze1 n = [(True,True)] ++ makeMaze1 (n-1)
--kruskal
kruskal :: Maze -> Maze
kruskal (Maze c w h) = Maze (forloop (shuffle (walls w h 0 0) ) (createsets (w*h) 0) c w) w h
printi (Maze c w h) = c
createsets 0 m = []
createsets n m = [[m]] ++ createsets (n-1) (m+1)
walls w h c1 c2 | (c1 == w-1) && (c2 == h-1) = []
| (c1 == w-1) = [(c1+c2*w,c1+c2*w+w)] ++ walls w h 0 (c2+1)
| (c2 == h-1) = [(c1+c2*w,c1+c2*w+1)] ++ walls w h (c1+1) c2
| otherwise = [(c1+c2*w,c1+c2*w+1)] ++ [(c1+c2*w,c1+c2*w+w)] ++ walls w h (c1+1) c2
forloop [] sets mz w = mz
forloop ((c1,c2):xs) sets mz w = if ((not (mymember c1 (myselect (c2+1) sets)))&&(not (mymember c2 (myselect (c1+1) sets))))
then forloop xs (joinset (myunion (myselect (c1+1) sets) (myselect (c2+1) sets)) (myunion (myselect (c1+1) sets) (myselect (c2+1) sets)) sets) (connect c1 mz (c2-c1) w) w
else forloop xs sets mz w
connect c1 mz b w = mychange c1 0 b mz w
mychange _ _ _ [] _ = []
mychange c1 n b ((x,y):mz) w | w == 1 = if(c1==n) then ((y,False):(mychange c1 (n+1) b mz) w) else ((x,y):(mychange c1 (n+1) b mz) w)
| b == 1 = if(c1==n) then ((False,y):(mychange c1 (n+1) b mz) w) else ((x,y):(mychange c1 (n+1) b mz) w)
| otherwise = if(c1==n) then ((x,False):(mychange c1 (n+1) b mz) w) else ((x,y):(mychange c1 (n+1) b mz) w)
joinset [] _ sets = sets
joinset (n:ns) us sets = joinset ns us (mydrop n 0 sets us)
myunion [] []= []
myunion [] (y:ys)= y:(myunion [] ys)
myunion (x:xs) ys = x:(myunion xs ys)
mydrop _ _ [] _ = []
mydrop n c (x:xs) us = if(c==n) then (us:(mydrop n (c+1) xs us)) else (x:(mydrop n (c+1) xs us))
myselect 1 (x:xs) = x
myselect n (x:xs) = myselect (n-1) xs
mymember x [] = False
mymember x (y:ys) = if (x==y) then True
else (mymember x ys)
nowalls [] w h metr = []
nowalls ((x,y):cs) w h metr | x == False && y == False = [(metr,metr+1),(metr,metr+w)] ++ nowalls cs w h (metr+1)
| x == False = [(metr,metr+1)] ++ nowalls cs w h (metr+1)
| y == False = [(metr,metr+w)] ++ nowalls cs w h (metr+1)
| otherwise = nowalls cs w h (metr+1)
adjacent _ [] _ _ = []
adjacent (x,y) ((a,b):nws) w h | x*w+y == a && (w==1) = [(b `mod` h,0)] ++ adjacent (x,y) nws w h
| x*w+y == b && (w==1) = [(a `mod` h,0)] ++ adjacent (x,y) nws w h
| x*w+y == a && (h==1) = [(0,b `mod`w)] ++ adjacent (x,y) nws w h
| x*w+y == b && (h==1) = [(0,a `mod` w)] ++ adjacent (x,y) nws w h
| x*w+y == a = [(b `div`w,b `mod` w)] ++ adjacent (x,y) nws w h
| x*w+y == b = [(a `div`w,a `mod` w)] ++ adjacent (x,y) nws w h
| otherwise = adjacent (x,y) nws w h
--solvePerfect
solvePerfect :: Maze ->(Int, Int) ->(Int, Int) ->[(Int, Int)]
solvePerfect (Maze cs w h) (sx,sy) (gx,gy) | sx == gx && sy == gy = [(sx,sy)]
| otherwise = solveperfect1 cs w h [(sx,sy)] (adjacent (sx,sy) (nowalls cs w h 0) w h) (sx,sy) (nowalls cs w h 0) (gx,gy)
solveperfect1 cs w h ls [] (prevx,prevy) nwls (gx,gy) = []
solveperfect1 cs w h ls ((curx,cury):st) (prevx,prevy) nwls (gx,gy) | (curx==gx)&&(cury==gy) = ls++[(gx,gy)]
| otherwise =
solveperfect1 cs w h (ls++[(curx,cury)]) (dropadjacent (adjacent (curx,cury) nwls w h) (prevx,prevy)) (curx,cury) nwls (gx,gy)
++ solveperfect1 cs w h (ls) st (prevx,prevy) nwls (gx,gy)
dropadjacent [] _ = []
dropadjacent ((x,y):xs) (px,py) | x == px && y == py = dropadjacent xs (px,py)
| otherwise = (x,y):dropadjacent xs (px,py)
--Run the maze or solve the maze you want
runmaze w h = putStr ( showMaze (kruskal (makeMaze w h)) [])
solvemaze w h (sx,sy) (gx,gy) = solvemaze1 (kruskal (makeMaze w h)) (sx,sy) (gx,gy)
solvemaze1 maze (x1,y1) (x2,y2) = putStr ( showMaze maze (solvePerfect maze (x1,y1) (x2,y2)))
--bonus (Braid Maze)
braid :: Maze ->Maze
braid (Maze cs w h) = Maze (braid1 cs cs w h 0 0 ) w h
braid1 [] cs _ _ _ _ = cs
braid1 ((x,y):xs) cs w h m1 m2 | m1 /= h-1 && m2 /= w-1 = if(countadj (adjacent (m1,m2) (nowalls cs w h 0) w h) == 1) then
braid1 xs (wchange cs m1 m2 w h 0 0) w h m1 (m2+1)
else braid1 xs cs w h m1 (m2+1)
| m1 /= h-1 && m2 == w-1 = if(countadj (adjacent (m1,m2) (nowalls cs w h 0) w h) == 1) then (
if(y == False) then
braid1 xs (wchange cs m1 (m2-1) w h 0 0) w h (m1+1) 0
else braid1 xs (wchange cs m1 m2 w h 0 0) w h (m1+1) 0 )
else braid1 xs cs w h (m1+1) 0
| m1 == h-1 && m2 == w-1 = braid1 xs (rem2 cs w h 0 0) w h m1 m2
| m1 == h-1 = if(countadj (adjacent (m1,m2) (nowalls cs w h 0) w h) == 1 ) then (
if(x == False) then
braid1 xs (wchange cs (m1-1) m2 w h 0 0) w h m1 (m2+1)
else braid1 xs (wchange cs m1 m2 w h 0 0) w h m1 (m2+1) )
else braid1 xs cs w h m1 (m2+1)
wchange [] _ _ _ _ _ _ = []
wchange ((x,y):xs) m1 m2 w h t1 t2 | t2/=w-1 = if( m1 == t1 && m2 == t2) then (rem1 (x,y) m1 h):wchange xs m1 m2 w h t1 (t2+1)
else (x,y):wchange xs m1 m2 w h t1 (t2+1)
| t2==w-1 = if( m1 == t1 && m2 == t2) then (rem1 (x,y) m1 h):wchange xs m1 m2 w h (t1+1) 0
else (x,y):wchange xs m1 m2 w h (t1+1) 0
countadj [] = 0
countadj ((x,y):xs) = 1 + countadj xs
rem1 (x,y) m1 h | y == True && m1 /= h-1 = (x,False)
| x == True && m1 /= h-1 = (False,y)
| x == True && m1 == h-1 = (False,y)
| y == True && m1 == h-1 = (x,False)
rem2 [] _ _ _ _ = []
rem2 ((x,y):xs) w h t1 t2 | t1 == h-1 && t2 == w-2 = (False,y):rem2 xs w h t1 (t2+1)
| t1 == h-2 && t2 == w-1 = (x,False):rem2 xs w h (t1+1) 0
| t2 == w-1 = (x,y):rem2 xs w h (t1+1) 0
| otherwise = (x,y):rem2 xs w h t1 (t2+1)
--solve braid
solveBraid :: Maze -> (Int, Int) -> (Int, Int) -> [(Int, Int)]
solveBraid (Maze cs w h) (sx,sy) (gx,gy) | sx == gx && sy == gy = [(sx,sy)]
| otherwise = solb (solbraid1 cs w h [(sx,sy)] (adjacent (sx,sy) (nowalls cs w h 0) w h) (sx,sy) (nowalls cs w h 0) (gx,gy) ) (gx,gy)
solbraid1 cs w h ls [] (prevx,prevy) nwls (gx,gy) = []
solbraid1 cs w h ls ((curx,cury):st) (prevx,prevy) nwls (gx,gy) | (curx==gx)&&(cury==gy) = ls++[(gx,gy)]
| otherwise = solbraid1 cs w h (ls++[(curx,cury)]) (dropadjacent1 (revL (adjacent (curx,cury) nwls w h)) (prevx,prevy) ls) (curx,cury) nwls (gx,gy) ++
solbraid1 cs w h (ls) st (prevx,prevy) nwls (gx,gy)
dropadjacent1 [] _ _ = []
dropadjacent1 ((x,y):xs) (px,py) vis | x == px && y == py = dropadjacent1 xs (px,py) vis
| find vis (x,y) == True = dropadjacent1 xs (px,py) vis
| otherwise = (x,y):dropadjacent1 xs (px,py) vis
find [] _ = False
find ((x,y):xs) (cx,cy) | x == cx && y == cy = True
| otherwise = find xs (cx,cy)
solb ((x,y):xs) (gx,gy) | x == gx && y == gy = [(x,y)]
| otherwise =(x,y): solb xs (gx,gy)
revL [] = []
revL (x:xs) = revL xs ++ [x]
--print braid or solve braid
printbraid w h = putStr (showMaze (braid (kruskal (makeMaze w h) ) ) [] )
solvebraid1 maze (x1,y1) (x2,y2) = putStr ( showMaze maze (solveBraid maze (x1,y1) (x2,y2)))
solvebraid w h (sx,sy) (gx,gy) = solvebraid1 (braid (themaze w h)) (sx,sy) (gx,gy)
--print both or solve both
themaze w h = (kruskal (makeMaze w h))
printboth1 maze = putStr ( showMaze maze [] ++ "\n\n" ++ showMaze (braid maze) [] )
braidsol maze (sx,sy) (gx,gy) = showMaze maze (solveBraid maze (sx,sy) (gx,gy) )
solveboth1 maze (sx,sy) (gx,gy) = putStr ( ( (showMaze maze (solvePerfect maze (sx,sy) (gx,gy)))) ++ "\n\n" ++ ( braidsol (braid maze) (sx,sy) (gx,gy) ) )
printboth w h = printboth1 (themaze w h)
solveboth w h (sx,sy) (gx,gy) = solveboth1 (themaze w h) (sx,sy) (gx,gy)