|
| 1 | +Collections: |
| 2 | + - Name: Seesaw Loss |
| 3 | + Metadata: |
| 4 | + Training Data: LVIS |
| 5 | + Training Techniques: |
| 6 | + - SGD with Momentum |
| 7 | + - Weight Decay |
| 8 | + Training Resources: 8x V100 GPUs |
| 9 | + Architecture: |
| 10 | + - Softmax |
| 11 | + - RPN |
| 12 | + - Convolution |
| 13 | + - Dense Connections |
| 14 | + - FPN |
| 15 | + - ResNet |
| 16 | + - RoIAlign |
| 17 | + - Seesaw Loss |
| 18 | + Paper: |
| 19 | + URL: https://arxiv.org/abs/2008.10032 |
| 20 | + Title: 'Seesaw Loss for Long-Tailed Instance Segmentation' |
| 21 | + README: configs/seesaw_loss/README.md |
| 22 | + |
| 23 | +Models: |
| 24 | + - Name: mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1 |
| 25 | + In Collection: Seesaw Loss |
| 26 | + Config: seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py |
| 27 | + Metadata: |
| 28 | + Epochs: 24 |
| 29 | + Results: |
| 30 | + - Task: Object Detection |
| 31 | + Dataset: LVIS v1 |
| 32 | + Metrics: |
| 33 | + box AP: 25.6 |
| 34 | + - Task: Instance Segmentation |
| 35 | + Dataset: LVIS v1 |
| 36 | + Metrics: |
| 37 | + mask AP: 25.0 |
| 38 | + Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1-a698dd3d.pth |
| 39 | + - Name: mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1 |
| 40 | + In Collection: Seesaw Loss |
| 41 | + Config: seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py |
| 42 | + Metadata: |
| 43 | + Epochs: 24 |
| 44 | + Results: |
| 45 | + - Task: Object Detection |
| 46 | + Dataset: LVIS v1 |
| 47 | + Metrics: |
| 48 | + box AP: 25.6 |
| 49 | + - Task: Instance Segmentation |
| 50 | + Dataset: LVIS v1 |
| 51 | + Metrics: |
| 52 | + mask AP: 25.4 |
| 53 | + Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-a1c11314.pth |
| 54 | + - Name: mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1 |
| 55 | + In Collection: Seesaw Loss |
| 56 | + Config: seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py |
| 57 | + Metadata: |
| 58 | + Epochs: 24 |
| 59 | + Results: |
| 60 | + - Task: Object Detection |
| 61 | + Dataset: LVIS v1 |
| 62 | + Metrics: |
| 63 | + box AP: 27.4 |
| 64 | + - Task: Instance Segmentation |
| 65 | + Dataset: LVIS v1 |
| 66 | + Metrics: |
| 67 | + mask AP: 26.7 |
| 68 | + Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1-8e6e6dd5.pth |
| 69 | + - Name: mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1 |
| 70 | + In Collection: Seesaw Loss |
| 71 | + Config: seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py |
| 72 | + Metadata: |
| 73 | + Epochs: 24 |
| 74 | + Results: |
| 75 | + - Task: Object Detection |
| 76 | + Dataset: LVIS v1 |
| 77 | + Metrics: |
| 78 | + box AP: 27.2 |
| 79 | + - Task: Instance Segmentation |
| 80 | + Dataset: LVIS v1 |
| 81 | + Metrics: |
| 82 | + mask AP: 27.3 |
| 83 | + Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-a0b59c42.pth |
| 84 | + - Name: mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1 |
| 85 | + In Collection: Seesaw Loss |
| 86 | + Config: configs/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py |
| 87 | + Metadata: |
| 88 | + Epochs: 24 |
| 89 | + Results: |
| 90 | + - Task: Object Detection |
| 91 | + Dataset: LVIS v1 |
| 92 | + Metrics: |
| 93 | + box AP: 27.6 |
| 94 | + - Task: Instance Segmentation |
| 95 | + Dataset: LVIS v1 |
| 96 | + Metrics: |
| 97 | + mask AP: 26.4 |
| 98 | + Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1-392a804b.pth |
| 99 | + - Name: mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1 |
| 100 | + In Collection: Seesaw Loss |
| 101 | + Config: configs/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py |
| 102 | + Metadata: |
| 103 | + Epochs: 24 |
| 104 | + Results: |
| 105 | + - Task: Object Detection |
| 106 | + Dataset: LVIS v1 |
| 107 | + Metrics: |
| 108 | + box AP: 27.6 |
| 109 | + - Task: Instance Segmentation |
| 110 | + Dataset: LVIS v1 |
| 111 | + Metrics: |
| 112 | + mask AP: 26.8 |
| 113 | + Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-cd0f6a12.pth |
| 114 | + - Name: mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1 |
| 115 | + In Collection: Seesaw Loss |
| 116 | + Config: configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py |
| 117 | + Metadata: |
| 118 | + Epochs: 24 |
| 119 | + Results: |
| 120 | + - Task: Object Detection |
| 121 | + Dataset: LVIS v1 |
| 122 | + Metrics: |
| 123 | + box AP: 28.9 |
| 124 | + - Task: Instance Segmentation |
| 125 | + Dataset: LVIS v1 |
| 126 | + Metrics: |
| 127 | + mask AP: 27.6 |
| 128 | + Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1-e68eb464.pth |
| 129 | + - Name: mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1 |
| 130 | + In Collection: Seesaw Loss |
| 131 | + Config: configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py |
| 132 | + Metadata: |
| 133 | + Epochs: 24 |
| 134 | + Results: |
| 135 | + - Task: Object Detection |
| 136 | + Dataset: LVIS v1 |
| 137 | + Metrics: |
| 138 | + box AP: 28.9 |
| 139 | + - Task: Instance Segmentation |
| 140 | + Dataset: LVIS v1 |
| 141 | + Metrics: |
| 142 | + mask AP: 28.2 |
| 143 | + Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-1d817139.pth |
| 144 | + - Name: cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1 |
| 145 | + In Collection: Seesaw Loss |
| 146 | + Config: configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py |
| 147 | + Metadata: |
| 148 | + Epochs: 24 |
| 149 | + Results: |
| 150 | + - Task: Object Detection |
| 151 | + Dataset: LVIS v1 |
| 152 | + Metrics: |
| 153 | + box AP: 33.1 |
| 154 | + - Task: Instance Segmentation |
| 155 | + Dataset: LVIS v1 |
| 156 | + Metrics: |
| 157 | + mask AP: 29.2 |
| 158 | + Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1-71e2215e.pth |
| 159 | + - Name: cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1 |
| 160 | + In Collection: Seesaw Loss |
| 161 | + Config: configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py |
| 162 | + Metadata: |
| 163 | + Epochs: 24 |
| 164 | + Results: |
| 165 | + - Task: Object Detection |
| 166 | + Dataset: LVIS v1 |
| 167 | + Metrics: |
| 168 | + box AP: 33.0 |
| 169 | + - Task: Instance Segmentation |
| 170 | + Dataset: LVIS v1 |
| 171 | + Metrics: |
| 172 | + mask AP: 30.0 |
| 173 | + Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-8b5a6745.pth |
| 174 | + - Name: cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1 |
| 175 | + In Collection: Seesaw Loss |
| 176 | + Config: configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py |
| 177 | + Metadata: |
| 178 | + Epochs: 24 |
| 179 | + Results: |
| 180 | + - Task: Object Detection |
| 181 | + Dataset: LVIS v1 |
| 182 | + Metrics: |
| 183 | + box AP: 30.0 |
| 184 | + - Task: Instance Segmentation |
| 185 | + Dataset: LVIS v1 |
| 186 | + Metrics: |
| 187 | + mask AP: 29.3 |
| 188 | + Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1-5d8ca2a4.pth |
| 189 | + - Name: cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1 |
| 190 | + In Collection: Seesaw Loss |
| 191 | + Config: configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py |
| 192 | + Metadata: |
| 193 | + Epochs: 24 |
| 194 | + Results: |
| 195 | + - Task: Object Detection |
| 196 | + Dataset: LVIS v1 |
| 197 | + Metrics: |
| 198 | + box AP: 32.8 |
| 199 | + - Task: Instance Segmentation |
| 200 | + Dataset: LVIS v1 |
| 201 | + Metrics: |
| 202 | + mask AP: 30.1 |
| 203 | + Weights: https://download.openmmlab.com/mmdetection/v2.0/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1-c8551505.pth |
0 commit comments