Skip to content

Latest commit

 

History

History
239 lines (208 loc) · 9.95 KB

README.md

File metadata and controls

239 lines (208 loc) · 9.95 KB

GeoSR: A Benchmark for Super Resolution and Semantic Segmentation

Demo

Currently, as computer vision is not my major research topic, I don't have enough time and energy to further enhance the GeoSR repo. So, the pull requests are welcome such as the support for more classification, detection and segmentation datasets.

Welcome to my homepage!

Introduction

GeoSR is an open-source super-resolution and semantic segmentation toolbox based on PyTorch, GeoSeg, pytorch lightning and timm, which mainly focuses on developing advanced Vision Transformers for UAV super-resolution and semantic segmentation.

Folder Structure

Download UAVid and prepare the following folders to organize this repo:

airs
├── GeoSR (code)
├── pretrain_weights (save the pretrained weights like vit, swin, etc)
├── model_weights (save the model weights)
├── lightning_logs (CSV format training logs)
├── data
│   ├── uavid
│   │   ├── uavid_train (original)
│   │   ├── uavid_val (original)
│   │   ├── uavid_test (original)
│   │   ├── uavid_train_val (Merge uavid_train and uavid_val)
│   ├── uavid_2x
...

Install

Open the folder airs using Linux Terminal and create python environment:

conda create -n airs python=3.8
conda activate airs

conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
pip install -r GeoSR/requirements.txt

Data Preprocessing

Download the datasets from the official website and split them yourself.

Split the training and validation sets for super-resolution and semantic segmentation.

python GeoSR/tools/seg_sr_split.py \
--basic-path "data/uavid/uavid_train_val" \
--train-seg-path "data/uavid/train_seg" \
--train-sr-path "data/uavid/train_sr" \
--val-seg-path "data/uavid/val_seg" \
--val-sr-path "data/uavid/val_sr" 

Prepare the training and validation sets for super-resolution and semantic segmentation (×2).

python GeoSR/tools/uavid_patch_split.py \
--input-dir "data/uavid/train_sr" \
--output-img-dir "data/UAVid_2x/train_sr/images" \
--output-ref-dir "data/UAVid_2x/train_sr/references" \
--output-mask-dir "data/UAVid_2x/train_sr/masks" \
--mode 'train' --split-size-h 256 --split-size-w 256 \
--stride-h 256 --stride-w 256 --scale 2
python GeoSR/tools/uavid_patch_split.py \
--input-dir "data/uavid/val_sr" \
--output-img-dir "data/UAVid_2x/val_sr/images" \
--output-ref-dir "data/UAVid_2x/val_sr/references" \
--output-mask-dir "data/UAVid_2x/val_sr/masks" \
--mode 'val' --split-size-h 256 --split-size-w 256 \
--stride-h 256 --stride-w 256 --scale 2
python GeoSR/tools/uavid_patch_split.py \
--input-dir "data/uavid/train_seg" \
--output-img-dir "data/UAVid_2x/train_seg/images" \
--output-ref-dir "data/UAVid_2x/train_seg/references" \
--output-mask-dir "data/UAVid_2x/train_seg/masks" \
--mode 'train' --split-size-h 256 --split-size-w 256 \
--stride-h 256 --stride-w 256 --scale 2
python GeoSR/tools/uavid_patch_split.py \
--input-dir "data/uavid/val_seg" \
--output-img-dir "data/UAVid_2x/val_seg/images" \
--output-ref-dir "data/UAVid_2x/val_seg/references" \
--output-mask-dir "data/UAVid_2x/val_seg/masks" \
--mode 'val' --split-size-h 256 --split-size-w 256 \
--stride-h 256 --stride-w 256 --scale 2

Prepare the test set (×2).

python GeoSR/tools/uavid_test_downsample.py \
--input-dir "data/uavid/uavid_test" \
--output-dir "data/UAVid_2x/test" \
--scale 2

Prepare the training and validation sets for super-resolution and semantic segmentation (×4).

python GeoSR/tools/uavid_patch_split.py \
--input-dir "data/uavid/train_sr" \
--output-img-dir "data/UAVid_4x/train_sr/images" \
--output-ref-dir "data/UAVid_4x/train_sr/references" \
--output-mask-dir "data/UAVid_4x/train_sr/masks" \
--mode 'train' --split-size-h 512 --split-size-w 512 \
--stride-h 512 --stride-w 512 --scale 4
python GeoSR/tools/uavid_patch_split.py \
--input-dir "data/uavid/val_sr" \
--output-img-dir "data/UAVid_4x/val_sr/images" \
--output-ref-dir "data/UAVid_4x/val_sr/references" \
--output-mask-dir "data/UAVid_4x/val_sr/masks" \
--mode 'val' --split-size-h 512 --split-size-w 512 \
--stride-h 512 --stride-w 512 --scale 4
python GeoSR/tools/uavid_patch_split.py \
--input-dir "data/uavid/train_seg" \
--output-img-dir "data/UAVid_4x/train_seg/images" \
--output-ref-dir "data/UAVid_4x/train_seg/references" \
--output-mask-dir "data/UAVid_4x/train_seg/masks" \
--mode 'train' --split-size-h 512 --split-size-w 512 \
--stride-h 512 --stride-w 512 --scale 4
python GeoSR/tools/uavid_patch_split.py \
--input-dir "data/uavid/val_seg" \
--output-img-dir "data/UAVid_4x/val_seg/images" \
--output-ref-dir "data/UAVid_4x/val_seg/references" \
--output-mask-dir "data/UAVid_4x/val_seg/masks" \
--mode 'val' --split-size-h 512 --split-size-w 512 \
--stride-h 512 --stride-w 512 --scale 4

Prepare the test set (×4).

python GeoSR/tools/uavid_test_downsample.py \
--input-dir "data/uavid/uavid_test" \
--output-dir "data/UAVid_4x/test" \
--scale 4

Prepare the training and validation sets for super-resolution and semantic segmentation (×8).

python GeoSR/tools/uavid_patch_split.py \
--input-dir "data/uavid/train_sr" \
--output-img-dir "data/UAVid_8x/train_sr/images" \
--output-ref-dir "data/UAVid_8x/train_sr/references" \
--output-mask-dir "data/UAVid_8x/train_sr/masks" \
--mode 'train' --split-size-h 1024 --split-size-w 1024 \
--stride-h 1024 --stride-w 1024 --scale 8
python GeoSR/tools/uavid_patch_split.py \
--input-dir "data/uavid/val_sr" \
--output-img-dir "data/UAVid_8x/val_sr/images" \
--output-ref-dir "data/UAVid_8x/val_sr/references" \
--output-mask-dir "data/UAVid_8x/val_sr/masks" \
--mode 'val' --split-size-h 1024 --split-size-w 1024 \
--stride-h 1024 --stride-w 1024 --scale 8
python GeoSR/tools/uavid_patch_split.py \
--input-dir "data/uavid/train_seg" \
--output-img-dir "data/UAVid_8x/train_seg/images" \
--output-ref-dir "data/UAVid_8x/train_seg/references" \
--output-mask-dir "data/UAVid_8x/train_seg/masks" \
--mode 'train' --split-size-h 1024 --split-size-w 1024 \
--stride-h 1024 --stride-w 1024 --scale 8
python GeoSR/tools/uavid_patch_split.py \
--input-dir "data/uavid/val_seg" \
--output-img-dir "data/UAVid_8x/val_seg/images" \
--output-ref-dir "data/UAVid_8x/val_seg/references" \
--output-mask-dir "data/UAVid_8x/val_seg/masks" \
--mode 'val' --split-size-h 1024 --split-size-w 1024 \
--stride-h 1024 --stride-w 1024 --scale 8

Prepare the test set (×8).

python GeoSR/tools/uavid_test_downsample.py \
--input-dir "data/uavid/uavid_test" \
--output-dir "data/UAVid_8x/test" \
--scale 8

Training for Super Resolution

"-c" means the path of the config, using different config to train different models.

python GeoSR/train_supervision_SR.py -c GeoSR/config/uavid_SR/lswinsr.py

Inference for the training, validation and test sets for segmentation

"-c" means the path of the config, using different settings of config to predict different scenarios.

python GeoSR/sr_for_seg.py --config-path GeoSR/config/uavid_SR/lswin2sr.py --prediction_mode 1
python GeoSR/sr_for_seg.py --config-path GeoSR/config/uavid_SR/lswin2sr.py --prediction_mode 2
python GeoSR/super_resolution_for_seg.py --config-path GeoSR/config/uavid_SR/lswin2sr.py

Super Resolution Semantic Segmentation

Citation

If you find this project useful in your research, please consider citing:

Other papers you might be interested in:

Acknowledgement:

The GeoSR is constructed highly based on the repository GeoSeg and SwinIR. We wish GeoSR could serve the growing research of UAV by providing a unified benchmark and inspiring researchers to develop their own super-resolution networks. Many thanks for the contributions of the following projects.