This repository has been archived by the owner on Oct 8, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsymbol_resnext.py
130 lines (125 loc) · 6.57 KB
/
symbol_resnext.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
'''
Adapted from https://github.com/tornadomeet/ResNet/blob/master/symbol_resnet.py
Original author Wei Wu
Implemented the following paper:
Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, Kaiming He. "Aggregated Residual Transformations for Deep Neural Network"
'''
import mxnet as mx
import numpy as np
def residual_unit(data, num_filter, stride, dim_match, name, bottle_neck=True, num_group=32, bn_mom=0.9, workspace=256, memonger=False):
"""Return ResNet Unit symbol for building ResNet
Parameters
----------
data : str
Input data
num_filter : int
Number of output channels
bnf : int
Bottle neck channels factor with regard to num_filter
stride : tuple
Stride used in convolution
dim_match : Boolean
True means channel number between input and output is the same, otherwise means differ
name : str
Base name of the operators
workspace : int
Workspace used in convolution operator
"""
if bottle_neck:
# the same as https://github.com/facebook/fb.resnet.torch#notes, a bit difference with origin paper
bn1 = mx.sym.BatchNorm(data=data, fix_gamma=False,
eps=2e-5, momentum=bn_mom, name=name + '_bn1')
act1 = mx.sym.Activation(
data=bn1, act_type='relu', name=name + '_relu1')
conv1 = mx.sym.Convolution(data=act1, num_filter=int(num_filter*0.5),
kernel=(1, 1), stride=(1, 1), pad=(0, 0),
no_bias=True, workspace=workspace, name=name + '_conv1')
bn2 = mx.sym.BatchNorm(data=conv1, fix_gamma=False,
eps=2e-5, momentum=bn_mom, name=name + '_bn2')
act2 = mx.sym.Activation(
data=bn2, act_type='relu', name=name + '_relu2')
conv2 = mx.sym.Convolution(data=act2, num_filter=int(num_filter*0.5), num_group=num_group,
kernel=(3, 3), stride=stride, pad=(1, 1),
no_bias=True, workspace=workspace, name=name + '_conv2')
bn3 = mx.sym.BatchNorm(data=conv2, fix_gamma=False,
eps=2e-5, momentum=bn_mom, name=name + '_bn3')
act3 = mx.sym.Activation(
data=bn3, act_type='relu', name=name + '_relu3')
conv3 = mx.sym.Convolution(data=act3, num_filter=num_filter,
kernel=(1, 1), stride=(1, 1), pad=(0, 0),
no_bias=True, workspace=workspace, name=name + '_conv3')
if dim_match:
shortcut = data
else:
shortcut = mx.sym.Convolution(data=data, num_filter=num_filter,
kernel=(1, 1), stride=stride, no_bias=True,
workspace=workspace, name=name+'_sc')
if memonger:
shortcut._set_attr(mirror_stage='True')
return conv3 + shortcut
else:
raise ValueError("must have bottleneck structure to differ from resnet")
# conv1 = mx.sym.Convolution(data=data, num_filter=num_filter,
# kernel=(3, 3), stride=stride, pad=(1, 1),
# no_bias=True, workspace=workspace, name=name + '_conv1')
# bn1 = mx.sym.BatchNorm(data=conv1, fix_gamma=False,
# momentum=bn_mom, eps=2e-5, name=name + '_bn1')
# act1 = mx.sym.Activation(
# data=bn1, act_type='relu', name=name + '_relu1')
# conv2 = mx.sym.Convolution(data=act1, num_filter=num_filter,
# kernel=(3, 3), stride=(1, 1), pad=(1, 1),
# no_bias=True, workspace=workspace, name=name + '_conv2')
# bn2 = mx.sym.BatchNorm(data=conv2, fix_gamma=False,
# momentum=bn_mom, eps=2e-5, name=name + '_bn2')
# if dim_match:
# shortcut = data
# else:
# shortcut_conv = mx.sym.Convolution(data=data, num_filter=num_filter,
# kernel=(1, 1), stride=stride, no_bias=True,
# workspace=workspace, name=name+'_sc')
# shortcut = mx.sym.BatchNorm(data=shortcut_conv, fix_gamma=False,
# eps=2e-5, momentum=bn_mom, name=name + '_sc_bn')
# if memonger:
# shortcut._set_attr(mirror_stage='True')
# eltwise = bn2 + shortcut
# return mx.sym.Activation(data=eltwise, act_type='relu', name=name + '_relu')
def resnext(units, num_stage, filter_list, num_class, num_group, bottle_neck=True, bn_mom=0.9, workspace=256, memonger=False):
"""Return ResNeXt symbol of
Parameters
----------
units : list
Number of units in each stage
num_stage : int
Number of stage
filter_list : list
Channel size of each stage
num_class : int
Ouput size of symbol
num_groupes : int
Number of conv groups
workspace : int
Workspace used in convolution operator
"""
num_unit = len(units)
assert(num_unit == num_stage)
data = mx.sym.Variable(name='data')
data = mx.sym.BatchNorm(data=data, fix_gamma=True,
eps=2e-5, momentum=bn_mom, name='bn_data')
body = mx.sym.Convolution(data=data, num_filter=filter_list[0],
kernel=(3, 3), stride=(1, 1), pad=(1, 1),
no_bias=True, name="conv0", workspace=workspace)
for i in range(num_stage):
body = residual_unit(body, filter_list[i+1], (1 if i == 0 else 2, 1 if i == 0 else 2), False,
name='stage%d_unit%d' % (i + 1, 1), bottle_neck=bottle_neck, num_group=num_group,
bn_mom=bn_mom, workspace=workspace, memonger=memonger)
for j in range(units[i]-1):
body = residual_unit(body, filter_list[i+1], (1, 1), True, name='stage%d_unit%d' % (i + 1, j + 2),
bottle_neck=bottle_neck, num_group=num_group, bn_mom=bn_mom, workspace=workspace, memonger=memonger)
bn1 = mx.sym.BatchNorm(data=body, fix_gamma=False,
eps=2e-5, momentum=bn_mom, name='bn1')
relu1 = mx.sym.Activation(data=bn1, act_type='relu', name='relu1')
pool1 = mx.sym.Pooling(data=relu1, global_pool=True, kernel=(7, 7),
pool_type='avg', name='pool1')
flat = mx.sym.Flatten(data=pool1)
fc1 = mx.sym.FullyConnected(data=flat, num_hidden=num_class, name='fc1')
return mx.sym.SoftmaxOutput(data=fc1, name='softmax')