-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathbuild_datasets_avg_rgb.py
62 lines (49 loc) · 2.33 KB
/
build_datasets_avg_rgb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from PIL import Image, ImageEnhance
import numpy as np
import os
import pandas as pd
import argparse
def get_args():
parser = argparse.ArgumentParser(description='AVG RGB Dataset Builder')
parser.add_argument('--SOURCE_PATH', type=str, required=True, help='Path to source images folder')
return parser.parse_args()
def build_dataframe_average_rgb():
args = get_args()
df=pd.DataFrame(columns=['filename','avg_r','avg_g','avg_b'])
source = args.SOURCE_PATH
_, _, filenames = next(os.walk(source))
length=len(filenames)
index=0
print('')
for filename in filenames:
try:
img = Image.open(source+filename)
img_array = np.array(img)
#Get the average value of Red, Green, and Blue
#Original Image
df=df.append({'filename':filename,'avg_r':np.mean(img_array[:,:,0]),'avg_g':np.mean(img_array[:,:,1]),'avg_b':np.mean(img_array[:,:,2])},ignore_index=True)
#RGB -> BGR Image
bgr_img_array = img_array[:,:,::-1]
df=df.append({'filename':'bgr_'+filename,'avg_r':np.mean(bgr_img_array[:,:,0]),'avg_g':np.mean(bgr_img_array[:,:,1]),'avg_b':np.mean(bgr_img_array[:,:,2])},ignore_index=True)
bgr_img = Image.fromarray(bgr_img_array)
bgr_img.save(source+'bgr_'+filename)
# Enhanced Image
img_enh = ImageEnhance.Contrast(img)
img_enh = img_enh.enhance(1.8)
img_enh_array = np.array(img_enh)
df=df.append({'filename':'enh_' + filename,'avg_r':np.mean(img_enh_array[:,:,0]),'avg_g':np.mean(img_enh_array[:,:,1]),'avg_b':np.mean(img_enh_array[:,:,2])},ignore_index=True)
img_enh.save(source+'enh_'+filename)
# Grayscale Image
grey_img = img.convert('L')
grey_img_array = np.array(grey_img)
df=df.append({'filename':'gray_' + filename,'avg_r':np.mean(grey_img_array),'avg_g':np.mean(grey_img_array),'avg_b':np.mean(grey_img_array)},ignore_index=True)
grey_img.save(source+'gray_'+filename)
index+=1
print(('%.4f percents done \r')%(index*100/length),end='')
except:
index+=1
print('\n Image Error')
print('')
df.to_csv('Avg_RGB_dataset.csv',index=False)
if __name__=='__main__':
build_dataframe_average_rgb()