forked from sigp/blockprint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassifier.py
executable file
·399 lines (315 loc) · 12.1 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
#!/usr/bin/env python3
import os
import json
import itertools
import argparse
import numpy as np
import matplotlib.pyplot as plt
import pickle
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import cross_validate
from feature_selection import * # noqa F403
from feature_selection import ALL_FEATURES
from prepare_training_data import CLIENTS, classify_reward_by_graffiti
K = 9
MLP_HIDDEN_LAYER_SIZES = (390, 870)
WEIGHTS = "distance"
MIN_GUESS_THRESHOLD = 0.20
CONFIDENCE_THRESHOLD = 0.95
DEFAULT_FEATURES = [
"percent_redundant_boost",
"difflib_rewards",
"difflib_slot",
"difflib_slot_rev",
]
DEFAULT_GRAFFITI_ONLY = ["Lodestar"]
VIABLE_FEATURES = [
"percent_redundant_boost",
"percent_pairwise_ordered",
"difflib_rewards",
"difflib_slot_index",
"difflib_index_slot",
"difflib_slot_index_rev",
"difflib_index_slot_rev",
"difflib_slot",
"difflib_slot_rev",
"spearman_correlation",
"norm_reward",
"mean_density",
"percent_single_bit",
"difflib_slot_reward",
"difflib_slot_reward_rev",
]
def all_feature_vecs_with_dimension(dimension):
return sorted(map(list, itertools.combinations(VIABLE_FEATURES, dimension)))
def all_client_groupings_with_dimension(enabled_clients, dimension):
return sorted(map(list, itertools.combinations(enabled_clients, dimension)))
def into_feature_row(block_reward, features):
return [ALL_FEATURES[feature](block_reward) for feature in features]
class Classifier:
def __init__(
self,
data_dir,
grouped_clients=[],
disabled_clients=[],
graffiti_only_clients=DEFAULT_GRAFFITI_ONLY,
features=DEFAULT_FEATURES,
enable_cv=False,
classifier_type="knn",
hidden_layer_sizes=MLP_HIDDEN_LAYER_SIZES,
):
graffiti_only_clients = set(graffiti_only_clients)
assert (
set(disabled_clients) & graffiti_only_clients == set()
), "clients must not be both graffiti-only and disabled"
assert (
set(disabled_clients) & set(grouped_clients) == set()
), "clients must not be both disabled and grouped"
assert (
set(grouped_clients) & graffiti_only_clients == set()
), "clients must not be both graffiti-only and grouped"
assert classifier_type in ["knn", "mlp"], "classifier_type must be knn or mlp"
feature_matrix = []
training_labels = []
enabled_clients = []
other_index = CLIENTS.index("Other")
for i, client in enumerate(CLIENTS):
if client in disabled_clients or client in graffiti_only_clients:
continue
client_dir = os.path.join(data_dir, client)
if os.path.exists(client_dir):
if client not in grouped_clients:
enabled_clients.append(client)
else:
if client == "Other" and len(grouped_clients) > 0:
enabled_clients.append(client)
continue
for reward_file in os.listdir(client_dir):
with open(os.path.join(client_dir, reward_file), "r") as f:
block_reward = json.load(f)
feature_row = into_feature_row(block_reward, features)
feature_matrix.append(feature_row)
# print(f"{client}: {feature_row}")
if client in grouped_clients:
training_labels.append(other_index)
else:
training_labels.append(i)
feature_matrix = np.array(feature_matrix)
if classifier_type == "knn":
classifier = KNeighborsClassifier(n_neighbors=K, weights=WEIGHTS)
elif classifier_type == "mlp":
classifier = MLPClassifier(
hidden_layer_sizes=hidden_layer_sizes, max_iter=1000
)
# Assert above makes sure that classifier_type is one of the valid types
if enable_cv:
self.scores = cross_validate(
classifier, feature_matrix, training_labels, scoring="balanced_accuracy"
)
else:
self.scores = None
classifier.fit(feature_matrix, training_labels)
self.classifier = classifier
self.enabled_clients = enabled_clients
self.graffiti_only_clients = set(graffiti_only_clients)
self.features = features
self.feature_matrix = feature_matrix
self.training_labels = training_labels
def classify(self, block_reward):
graffiti_guess = classify_reward_by_graffiti(block_reward)
if graffiti_guess in self.graffiti_only_clients:
prob_by_client = {graffiti_guess: 1.0}
return (graffiti_guess, graffiti_guess, prob_by_client, graffiti_guess)
row = into_feature_row(block_reward, self.features)
res = self.classifier.predict_proba([row])
prob_by_client = {
client: res[0][i] for i, client in enumerate(self.enabled_clients)
}
multilabel = compute_multilabel(
compute_guess_list(prob_by_client, self.enabled_clients)
)
label = compute_best_guess(prob_by_client)
return (label, multilabel, prob_by_client, graffiti_guess)
def plot_feature_matrix(self, output_path):
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
x = self.feature_matrix[:, 0]
y = self.feature_matrix[:, 1]
z = self.feature_matrix[:, 2]
scatter = ax.scatter(
x, y, z, c=self.training_labels, marker=".", alpha=0.25, cmap="Set1"
)
handles, _ = scatter.legend_elements()
labels = self.enabled_clients
legend1 = ax.legend(handles, labels, loc="best", title="Client")
ax.add_artist(legend1)
assert (
len(self.features) == 3
), "must have exactly 3 features selected for plotting"
ax.set_xlabel(self.features[0])
ax.set_ylabel(self.features[1])
ax.set_zlabel(self.features[2])
if output_path is None:
fig.show()
else:
fig.savefig(output_path)
def compute_guess_list(probability_map, enabled_clients) -> list:
guesses = []
for client in enabled_clients:
if probability_map[client] > CONFIDENCE_THRESHOLD:
return [client]
elif probability_map[client] > MIN_GUESS_THRESHOLD:
guesses.append(client)
return guesses
def compute_multilabel(guess_list):
if len(guess_list) == 1:
return guess_list[0]
elif len(guess_list) == 2:
return f"{guess_list[0]} or {guess_list[1]}"
else:
return "Uncertain"
def compute_best_guess(probability_map) -> str:
return max(
probability_map.keys(),
key=lambda client: probability_map[client],
default="Uncertain",
)
def parse_args():
parser = argparse.ArgumentParser("Classifier testing and cross validation")
parser.add_argument("data_dir", help="training data directory")
parser.add_argument("--classify", help="data to classify")
parser.add_argument(
"--cv", action="store_true", dest="enable_cv", help="enable cross validation"
)
parser.add_argument(
"--cv-group", default=0, type=int, help="number of clients to group for CV"
)
parser.add_argument(
"--cv-num-features", type=int, help="feature dimensionality for CV"
)
parser.add_argument(
"--group", default=[], nargs="+", help="clients to group during classification"
)
parser.add_argument(
"--classifier-type",
default="knn",
choices=["knn", "mlp"],
help="the type of classifier to use",
)
parser.add_argument(
"--persist",
action="store_true",
dest="should_persist",
help="if provided, the model is persisted",
)
parser.add_argument(
"--disable",
default=[],
nargs="+",
help="clients to disable during cross validation",
)
parser.add_argument(
"--graffiti-only",
default=DEFAULT_GRAFFITI_ONLY,
nargs="+",
help="clients to classify based on graffiti only",
)
parser.add_argument(
"--plot",
type=str,
help="output plot of 3D training data vectors (only works with --classify)",
)
return parser.parse_args()
def persist_classifier(classifier: Classifier, name: str) -> None:
try:
filename = f"{name}.pkl"
with open(filename, "wb") as fid:
pickle.dump(classifier, fid)
except Exception as e:
print(f"Failed to persist classifier due to {e}")
def import_classifier(model_path: str) -> Classifier:
"""Load a pickled classifier.
This function may throw an exception if the data is corrupt or the file does not exist.
"""
print(f"""Loading classifier from {model_path}""")
classifier = pickle.load(open(model_path, "rb"))
print("Loaded classifier into memory")
return classifier
def main():
args = parse_args()
data_dir = args.data_dir
classify_dir = args.classify
enable_cv = args.enable_cv
num_grouped = args.cv_group
num_features = args.cv_num_features
grouped_clients = args.group
should_persist = args.should_persist
graffiti_only = args.graffiti_only
classifier_type = args.classifier_type
disabled_clients = args.disable
enabled_clients = [
client
for client in CLIENTS
if client not in disabled_clients and client != "Other"
]
if enable_cv:
best_score = 0.0
best_features = None
print("performing cross validation")
if num_features is None:
feature_vecs = [DEFAULT_FEATURES]
else:
feature_vecs = all_feature_vecs_with_dimension(num_features)
for grouped_clients in all_client_groupings_with_dimension(
enabled_clients, num_grouped
):
for feature_vec in feature_vecs:
print(f"features: {feature_vec}")
classifier = Classifier(
data_dir,
grouped_clients=grouped_clients,
disabled_clients=disabled_clients,
graffiti_only_clients=graffiti_only,
features=feature_vec,
enable_cv=True,
classifier_type=classifier_type,
)
print(f"enabled clients: {classifier.enabled_clients}")
print(f"classifier scores: {classifier.scores['test_score']}")
min_score = min(classifier.scores["test_score"])
if min_score > best_score:
best_features = feature_vec
best_score = min_score
print(f"best features found: {best_features}")
print(f"score: {best_score}")
return
assert classify_dir is not None, "classify dir required"
print(f"classifying all data in directory {classify_dir}")
print(f"grouped clients: {grouped_clients}")
classifier = Classifier(
data_dir, grouped_clients=grouped_clients, classifier_type=classifier_type
)
if args.plot is not None:
classifier.plot_feature_matrix(args.plot)
print("plot of training data written to {}".format(args.plot))
frequency_map = {}
total_blocks = 0
for input_file in os.listdir(classify_dir):
print(f"classifying rewards from file {input_file}")
with open(os.path.join(classify_dir, input_file), "r") as f:
block_rewards = json.load(f)
for block_reward in block_rewards:
_, multilabel, _, _ = classifier.classify(block_reward)
if multilabel not in frequency_map:
frequency_map[multilabel] = 0
frequency_map[multilabel] += 1
total_blocks += len(block_rewards)
print(f"total blocks processed: {total_blocks}")
if should_persist:
persist_classifier(classifier, "classifier")
for multilabel, num_blocks in sorted(frequency_map.items()):
percentage = round(num_blocks / total_blocks, 4)
print(f"{multilabel},{percentage}")
if __name__ == "__main__":
main()