forked from openvinotoolkit/openvino
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tf_AdjustSaturation.py
55 lines (48 loc) · 2.58 KB
/
test_tf_AdjustSaturation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
# Copyright (C) 2018-2025 Intel Corporation
# SPDX-License-Identifier: Apache-2.0
import numpy as np
import platform
import pytest
import tensorflow as tf
from common.tf_layer_test_class import CommonTFLayerTest
rng = np.random.default_rng(2323534)
class TestAdjustSaturation(CommonTFLayerTest):
def _prepare_input(self, inputs_info):
assert 'images:0' in inputs_info
assert 'scale:0' in inputs_info
images_shape = inputs_info['images:0']
inputs_data = {}
if self.special_case == 'Black Image':
inputs_data['images:0'] = np.zeros(images_shape).astype(self.input_type)
elif self.special_case == 'Grayscale Image':
inputs_data['images:0'] = np.ones(images_shape).astype(self.input_type) * np.random.rand()
else:
inputs_data['images:0'] = rng.uniform(0, 1.0, images_shape).astype(self.input_type)
inputs_data['scale:0'] = rng.uniform(0, 1.0, []).astype(np.float32)
return inputs_data
def create_adjust_saturation_net(self, input_shape, input_type, special_case):
self.special_case = special_case
self.input_type = input_type
tf.compat.v1.reset_default_graph()
# Create the graph and model
with tf.compat.v1.Session() as sess:
images = tf.compat.v1.placeholder(input_type, input_shape, 'images')
scale = tf.compat.v1.placeholder(tf.float32, [], 'scale')
tf.raw_ops.AdjustSaturation(images=images, scale=scale)
tf.compat.v1.global_variables_initializer()
tf_net = sess.graph_def
return tf_net, None
@pytest.mark.parametrize('input_shape', [[7, 7, 3], [5, 23, 27, 3], [3, 4, 13, 15, 3]])
@pytest.mark.parametrize('input_type', [np.float32])
@pytest.mark.parametrize('special_case', [None, 'Black Image', 'Grayscale Image'])
@pytest.mark.precommit
@pytest.mark.nightly
def test_adjust_saturation_basic(self, input_shape, input_type, special_case,
ie_device, precision, ir_version, temp_dir, use_legacy_frontend):
if ie_device == 'GPU' and input_shape in [[5, 23, 27, 3], [3, 4, 13, 15, 3]]:
pytest.skip("151264: accuracy error on GPU")
if platform.machine() in ["aarch64", "arm64", "ARM64"] and input_shape in [[5, 23, 27, 3], [3, 4, 13, 15, 3]]:
pytest.skip("151263: accuracy error on ARM")
self._test(*self.create_adjust_saturation_net(input_shape, input_type, special_case),
ie_device, precision, ir_version, temp_dir=temp_dir,
use_legacy_frontend=use_legacy_frontend)